Unbound MEDLINE

Effect of physical damage to ears of corn before harvest and treatment with various additives on the concentration of mycotoxins, silage fermentation, and aerobic stability of corn silage.

Abstract

We studied the effects of damaging ears of corn in the field prior to harvest and the use of various additives on the production of selected mycotoxins, silage fermentation, and aerobic stability of whole plant corn. In experiment 1, ears of corn were undamaged or were slashed with a knife 7 d before harvesting, exposing damaged kernels to the environment. Corn plants were harvested (about 35% DM) and treated in a 2 × 2 factorial arrangement of treatments. Treatments were undamaged or damaged plants, untreated or treated with Lactobacillus buchneri 40788 (400,000 cfu/g of fresh forage) and Pediococcus pentosaceus (100,000 cfu/g). Damaging ears prior to harvest increased the amount of fumonisin but decreased the amount of starch in harvested corn plants. After ensiling, corn silage made from plants damaged before harvest had lower starch but greater concentrations of deoxynivalenol and fumonisin than silage made from plants that were undamaged. Microbial inoculation resulted in fewer yeasts and lower concentrations of zearalenone in silage when compared to uninoculated silage. Inoculated silage also had more acetic acid and 1,2-propanediol than did uninoculated silage. In experiment 2, ears of corn were undamaged or were slashed with a knife 27 d or 9 d before harvesting for corn silage. Whole plants were harvested at about 36% DM in a 2 × 3 factorial arrangement of treatments. Factors were time of damaging the ears (27 d, 9 d, or no damage) relative to harvest and no additive or 0.1% (fresh weight) potassium sorbate. Damaging plants 9 d prior to harvest did not affect the concentrations of deoxynivalenol, fumonisin, and zearalenone in plants at harvest. However, concentrations of deoxynivalenol and fumonisin were increased in fresh forage that had ears damaged at 27 d when compared to corn plants that were undamaged. Corn plants damaged for 27 d prior to harvest also had a lower concentration of starch than corn damaged for 9 d but was higher in acid detergent fiber than other treatments. The addition of potassium sorbate at harvest had no effect on the concentrations of mycotoxins in the resulting silage, but concentrations of mycotoxins were still greatest in silage made from plants that were damaged the longest prior to harvest (27 d). Silages treated with potassium sorbate had fewer yeasts and molds than silages without the additive. Damaging ears of corn before harvest had no effects on the aerobic stability of silages in both experiments. In contrast, the addition of the inoculant and potassium sorbate improved aerobic stabilities of silages when compared to untreated silages. These studies showed that physical damage to ears of corn prior to harvest can result in the production of mycotoxins in the field. This finding suggests that producers should test corn silage for mycotoxins prior to feeding especially if the forage has been subjected to physical damage prior to ensiling.

Links

  • Publisher Full Text
  • Authors

    Teller RS, Schmidt RJ, Whitlow LW, Kung L

    Source

    Journal of dairy science 95:3 2012 Mar pg 1428-36

    MeSH

    Agriculture
    Fermentation
    Food Additives
    Mycotoxins
    Nutritive Value
    Silage
    Zea mays

    Pub Type(s)

    Journal Article

    Language

    eng

    PubMed ID

    22365225