Tags

Type your tag names separated by a space and hit enter

Reaction of peroxynitrite with melatonin: A mechanistic study.
Chem Res Toxicol. 1999 Jun; 12(6):526-34.CR

Abstract

The pH profile of the peroxynitrite/melatonin reaction suggests that both peroxynitrous acid (ONOOH) and its anion (ONOO-) are reactive toward melatonin, but at physiological pH most of the reaction with melatonin involves ONOOH and the activated form of peroxynitrous acid (ONOOH). The formation of hydroxylated products (mainly 6-hydroxymelatonin) suggests that melatonin also reacts with ONOOH. The overall peroxynitrite/melatonin reaction is first-order in melatonin and first-order in peroxynitrite, but the hydroxylation of melatonin is presumed to be zero-order in melatonin. Melatonin is metabolized in the liver, mainly to 6-hydroxymelatonin, so we do not think this metabolite is a useful biomarker for melatonin's antioxidant activity; however, 6-hydroxymelatonin is a better chain-breaking antioxidant than melatonin and may contribute to the beneficial effects of melatonin in vivo. As is now well-known, CO2 modulates the reactions of peroxynitrite. The reaction of peroxynitrite with melatonin in the absence of added bicarbonate produces mainly 6-hydroxymelatonin and 1,2,3,3a,8, 8a-hexahydro-1-acetyl-5-methoxy-8a-hydroxypyrrolo[2,3-b]indole, with some isomeric 1,2,3,3a,8, 8a-hexahydro-1-acetyl-5-methoxy-3a-hydroxypyrrolo[2,3-b]indole. In the presence of added bicarbonate, product yields decrease and 6-hydroxymelatonin is not formed. These facts suggest that melatonin scavenges reactive species (such as CO3*- and *NO2) that are produced from the peroxynitrite/CO2 reaction. The spectrum of the melatoninyl radical cation is observed both in the absence and in the presence of added bicarbonate, suggesting that the melatoninyl radical cation is the initial product and the hydroxypyrrolo[2, 3-b]indole products are derived from it. Unlike tyrosine, where both nitrated and hydroxylated products can be isolated, nitromelatonin is not found in the final products from the melatonin/peroxynitrite reaction in either the absence or presence of added bicarbonate. However, we suggest that 2-hydroxy-3-nitro- and/or 2-hydroxy-3-peroxynitro-2,3-dihydromelatonin are formed as intermediates and subsequently decompose to give 1,2,3,3a,8, 8a-hexahydro-1-acetyl-5-methoxy-8a-hydroxypyrrolo[2,3-b]indole. Since peroxynitrite/CO2 governs the reactions of peroxynitrite in vivo, we suggest that the hydroxypyrrolo[2,3-b]indole products are the main products from the oxidation of melatonin by peroxynitrite-derived species in vivo, and that these products may serve as indexes for melatonin's antioxidant activity.

Authors+Show Affiliations

Biodynamics Institute, Louisiana State University, Baton Rouge, Louisiana 70803-1800, USA.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

10368316

Citation

Zhang, H, et al. "Reaction of Peroxynitrite With Melatonin: a Mechanistic Study." Chemical Research in Toxicology, vol. 12, no. 6, 1999, pp. 526-34.
Zhang H, Squadrito GL, Uppu R, et al. Reaction of peroxynitrite with melatonin: A mechanistic study. Chem Res Toxicol. 1999;12(6):526-34.
Zhang, H., Squadrito, G. L., Uppu, R., & Pryor, W. A. (1999). Reaction of peroxynitrite with melatonin: A mechanistic study. Chemical Research in Toxicology, 12(6), 526-34.
Zhang H, et al. Reaction of Peroxynitrite With Melatonin: a Mechanistic Study. Chem Res Toxicol. 1999;12(6):526-34. PubMed PMID: 10368316.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Reaction of peroxynitrite with melatonin: A mechanistic study. AU - Zhang,H, AU - Squadrito,G L, AU - Uppu,R, AU - Pryor,W A, PY - 1999/6/16/pubmed PY - 1999/6/16/medline PY - 1999/6/16/entrez SP - 526 EP - 34 JF - Chemical research in toxicology JO - Chem Res Toxicol VL - 12 IS - 6 N2 - The pH profile of the peroxynitrite/melatonin reaction suggests that both peroxynitrous acid (ONOOH) and its anion (ONOO-) are reactive toward melatonin, but at physiological pH most of the reaction with melatonin involves ONOOH and the activated form of peroxynitrous acid (ONOOH). The formation of hydroxylated products (mainly 6-hydroxymelatonin) suggests that melatonin also reacts with ONOOH. The overall peroxynitrite/melatonin reaction is first-order in melatonin and first-order in peroxynitrite, but the hydroxylation of melatonin is presumed to be zero-order in melatonin. Melatonin is metabolized in the liver, mainly to 6-hydroxymelatonin, so we do not think this metabolite is a useful biomarker for melatonin's antioxidant activity; however, 6-hydroxymelatonin is a better chain-breaking antioxidant than melatonin and may contribute to the beneficial effects of melatonin in vivo. As is now well-known, CO2 modulates the reactions of peroxynitrite. The reaction of peroxynitrite with melatonin in the absence of added bicarbonate produces mainly 6-hydroxymelatonin and 1,2,3,3a,8, 8a-hexahydro-1-acetyl-5-methoxy-8a-hydroxypyrrolo[2,3-b]indole, with some isomeric 1,2,3,3a,8, 8a-hexahydro-1-acetyl-5-methoxy-3a-hydroxypyrrolo[2,3-b]indole. In the presence of added bicarbonate, product yields decrease and 6-hydroxymelatonin is not formed. These facts suggest that melatonin scavenges reactive species (such as CO3*- and *NO2) that are produced from the peroxynitrite/CO2 reaction. The spectrum of the melatoninyl radical cation is observed both in the absence and in the presence of added bicarbonate, suggesting that the melatoninyl radical cation is the initial product and the hydroxypyrrolo[2, 3-b]indole products are derived from it. Unlike tyrosine, where both nitrated and hydroxylated products can be isolated, nitromelatonin is not found in the final products from the melatonin/peroxynitrite reaction in either the absence or presence of added bicarbonate. However, we suggest that 2-hydroxy-3-nitro- and/or 2-hydroxy-3-peroxynitro-2,3-dihydromelatonin are formed as intermediates and subsequently decompose to give 1,2,3,3a,8, 8a-hexahydro-1-acetyl-5-methoxy-8a-hydroxypyrrolo[2,3-b]indole. Since peroxynitrite/CO2 governs the reactions of peroxynitrite in vivo, we suggest that the hydroxypyrrolo[2,3-b]indole products are the main products from the oxidation of melatonin by peroxynitrite-derived species in vivo, and that these products may serve as indexes for melatonin's antioxidant activity. SN - 0893-228X UR - https://www.unboundmedicine.com/medline/citation/10368316/Reaction_of_peroxynitrite_with_melatonin:_A_mechanistic_study_ DB - PRIME DP - Unbound Medicine ER -