Tags

Type your tag names separated by a space and hit enter

Urinary isoflavonoid and lignan excretion on a Western diet: relation to soy, vegetable, and fruit intake.
Cancer Epidemiol Biomarkers Prev. 1999 Aug; 8(8):699-707.CE

Abstract

Dietary isoflavone and lignan phytoestrogens are potential chemopreventive agents. This has led to a need to monitor exposure to these compounds in human populations and to determine which components of a mixed diet contribute to the exposure. Typically, urinary isoflavonoid excretion is associated with soy consumption and that of lignans is associated with whole grains. However, other plant foods are known to contain phytoestrogen precursors. The purpose of this study was to examine the association between urinary isoflavonoid and lignan excretion and intakes of vegetables and fruits (V&F). Isoflavonoids (genistein, daidzein, O-desmethylangolensin, and equol) and lignans (enterolactone, enterodiol, and matairesinol) were measured in urine collected for 3 days from 49 male and 49 female volunteers (age, 18-37 years) reporting a wide range of habitual V&F intakes. Dietary intakes were assessed using 5-day diet records and a food frequency questionnaire. V&F groupings (total V&F, total V, total F, soyfoods, and V&F grouped by botanical families) were used to assess the relationship between V&F intake and urinary isoflavonoid and lignan excretion. Pearson correlations were performed. Intake of soyfoods was correlated significantly with urinary genistein (r = 0.40; P = 0.0001), O-desmethylangolensin (r = 0.37; P = 0.0002), daidzein (r = 034; P = 0.0007), and the sum of isoflavonoids (r = 0.39; P = 0.0001). There was no association between equol excretion and soy intake or between the isoflavonoids and any other V&F groupings. In addition, isoflavonoid excretion was correlated positively with intake of high-fat and processed meats, particularly among men who did not consume soy. This suggests that, even in the United States, on a Western diet, soyfoods are the primary contributors to isoflavone intake; however, additional "hidden sources" of soy may also contribute to exposure. In contrast, a variety of fiber-containing foods contributed to lignan excretion; the sum of the urinary lignans, enterodiol, enterolactone, and matairesinol, was associated with intake of total F (r = 0.27; P = 0.008), total V&F (r = 0.25; P = 0.01), soyfoods (r = 0.28; P = 0.006), and dietary fiber (r = 0.36; P = 0.0003). Overall, urinary phytoestrogens (isoflavonoids + lignans) were significantly higher in "high" compared with "low" V&F consumers. Compared with the "low" V&F group, the "high" group consumed diets that were, on average, higher in fiber and carbohydrate and soyfoods and lower in fat; thus, the urinary phytoestrogens may also be a useful marker of healthier dietary patterns.

Authors+Show Affiliations

Cancer Prevention Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

10744130

Citation

Lampe, J W., et al. "Urinary Isoflavonoid and Lignan Excretion On a Western Diet: Relation to Soy, Vegetable, and Fruit Intake." Cancer Epidemiology, Biomarkers & Prevention : a Publication of the American Association for Cancer Research, Cosponsored By the American Society of Preventive Oncology, vol. 8, no. 8, 1999, pp. 699-707.
Lampe JW, Gustafson DR, Hutchins AM, et al. Urinary isoflavonoid and lignan excretion on a Western diet: relation to soy, vegetable, and fruit intake. Cancer Epidemiol Biomarkers Prev. 1999;8(8):699-707.
Lampe, J. W., Gustafson, D. R., Hutchins, A. M., Martini, M. C., Li, S., Wähälä, K., Grandits, G. A., Potter, J. D., & Slavin, J. L. (1999). Urinary isoflavonoid and lignan excretion on a Western diet: relation to soy, vegetable, and fruit intake. Cancer Epidemiology, Biomarkers & Prevention : a Publication of the American Association for Cancer Research, Cosponsored By the American Society of Preventive Oncology, 8(8), 699-707.
Lampe JW, et al. Urinary Isoflavonoid and Lignan Excretion On a Western Diet: Relation to Soy, Vegetable, and Fruit Intake. Cancer Epidemiol Biomarkers Prev. 1999;8(8):699-707. PubMed PMID: 10744130.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Urinary isoflavonoid and lignan excretion on a Western diet: relation to soy, vegetable, and fruit intake. AU - Lampe,J W, AU - Gustafson,D R, AU - Hutchins,A M, AU - Martini,M C, AU - Li,S, AU - Wähälä,K, AU - Grandits,G A, AU - Potter,J D, AU - Slavin,J L, PY - 2000/4/1/pubmed PY - 2000/5/20/medline PY - 2000/4/1/entrez SP - 699 EP - 707 JF - Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology JO - Cancer Epidemiol. Biomarkers Prev. VL - 8 IS - 8 N2 - Dietary isoflavone and lignan phytoestrogens are potential chemopreventive agents. This has led to a need to monitor exposure to these compounds in human populations and to determine which components of a mixed diet contribute to the exposure. Typically, urinary isoflavonoid excretion is associated with soy consumption and that of lignans is associated with whole grains. However, other plant foods are known to contain phytoestrogen precursors. The purpose of this study was to examine the association between urinary isoflavonoid and lignan excretion and intakes of vegetables and fruits (V&F). Isoflavonoids (genistein, daidzein, O-desmethylangolensin, and equol) and lignans (enterolactone, enterodiol, and matairesinol) were measured in urine collected for 3 days from 49 male and 49 female volunteers (age, 18-37 years) reporting a wide range of habitual V&F intakes. Dietary intakes were assessed using 5-day diet records and a food frequency questionnaire. V&F groupings (total V&F, total V, total F, soyfoods, and V&F grouped by botanical families) were used to assess the relationship between V&F intake and urinary isoflavonoid and lignan excretion. Pearson correlations were performed. Intake of soyfoods was correlated significantly with urinary genistein (r = 0.40; P = 0.0001), O-desmethylangolensin (r = 0.37; P = 0.0002), daidzein (r = 034; P = 0.0007), and the sum of isoflavonoids (r = 0.39; P = 0.0001). There was no association between equol excretion and soy intake or between the isoflavonoids and any other V&F groupings. In addition, isoflavonoid excretion was correlated positively with intake of high-fat and processed meats, particularly among men who did not consume soy. This suggests that, even in the United States, on a Western diet, soyfoods are the primary contributors to isoflavone intake; however, additional "hidden sources" of soy may also contribute to exposure. In contrast, a variety of fiber-containing foods contributed to lignan excretion; the sum of the urinary lignans, enterodiol, enterolactone, and matairesinol, was associated with intake of total F (r = 0.27; P = 0.008), total V&F (r = 0.25; P = 0.01), soyfoods (r = 0.28; P = 0.006), and dietary fiber (r = 0.36; P = 0.0003). Overall, urinary phytoestrogens (isoflavonoids + lignans) were significantly higher in "high" compared with "low" V&F consumers. Compared with the "low" V&F group, the "high" group consumed diets that were, on average, higher in fiber and carbohydrate and soyfoods and lower in fat; thus, the urinary phytoestrogens may also be a useful marker of healthier dietary patterns. SN - 1055-9965 UR - https://www.unboundmedicine.com/medline/citation/10744130/Urinary_isoflavonoid_and_lignan_excretion_on_a_Western_diet:_relation_to_soy_vegetable_and_fruit_intake_ L2 - http://cebp.aacrjournals.org/cgi/pmidlookup?view=long&pmid=10744130 DB - PRIME DP - Unbound Medicine ER -