Tags

Type your tag names separated by a space and hit enter

Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity?
Ann Neurol. 2000 Apr; 47(4 Suppl 1):S60-8; discussion S68-9.AN

Abstract

The pathogenesis of the alterations in motor response that complicate levodopa therapy of Parkinson's disease remains obscure. Several experimental and clinical observations strongly suggest that changes in striatal activity may be crucial for this physiopathological condition. Accordingly, it has been postulated that dyskinesia might be due to abnormal activity of the corticostriatal pathway. Here, we review the physiological and pharmacological mechanisms underlying glutamatergic regulation of striatal neurons by the corticostriatal projection. In particular, we discuss the role of both (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors in the control of the short- and long-term efficacy of corticostriatal transmission. Indeed, repetitive cortical activation can generate either long-term depression or long-term potentiation (LTP) at corticostriatal synapses depending on the subtype of glutamate receptor activated during the induction phase of these forms of synaptic plasticity. Dopamine plays an important function in the regulation of both forms of synaptic plasticity. Dopamine denervation abolishes the physiological corticostriatal plasticity by producing biochemical and morphological changes within the striatum. We have recently observed a 'pathological' form of LTP at the corticostriatal synapse during energy deprivation. We speculate that this 'pathological' LTP, depending on the activation of NMDA glutamate receptors located on spiny striatal neurons, might play a role in the generation of levodopa-induced dyskinesia.

Authors+Show Affiliations

Clinica Neurologica, Dipartamento Neuroscienze, Università di Roma Tor Vergata, Rome, Italy.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Review

Language

eng

PubMed ID

10762133

Citation

Calabresi, P, et al. "Levodopa-induced Dyskinesia: a Pathological Form of Striatal Synaptic Plasticity?" Annals of Neurology, vol. 47, no. 4 Suppl 1, 2000, pp. S60-8; discussion S68-9.
Calabresi P, Giacomini P, Centonze D, et al. Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? Ann Neurol. 2000;47(4 Suppl 1):S60-8; discussion S68-9.
Calabresi, P., Giacomini, P., Centonze, D., & Bernardi, G. (2000). Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? Annals of Neurology, 47(4 Suppl 1), S60-8; discussion S68-9.
Calabresi P, et al. Levodopa-induced Dyskinesia: a Pathological Form of Striatal Synaptic Plasticity. Ann Neurol. 2000;47(4 Suppl 1):S60-8; discussion S68-9. PubMed PMID: 10762133.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? AU - Calabresi,P, AU - Giacomini,P, AU - Centonze,D, AU - Bernardi,G, PY - 2000/4/13/pubmed PY - 2000/4/29/medline PY - 2000/4/13/entrez SP - S60-8; discussion S68-9 JF - Annals of neurology JO - Ann Neurol VL - 47 IS - 4 Suppl 1 N2 - The pathogenesis of the alterations in motor response that complicate levodopa therapy of Parkinson's disease remains obscure. Several experimental and clinical observations strongly suggest that changes in striatal activity may be crucial for this physiopathological condition. Accordingly, it has been postulated that dyskinesia might be due to abnormal activity of the corticostriatal pathway. Here, we review the physiological and pharmacological mechanisms underlying glutamatergic regulation of striatal neurons by the corticostriatal projection. In particular, we discuss the role of both (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors in the control of the short- and long-term efficacy of corticostriatal transmission. Indeed, repetitive cortical activation can generate either long-term depression or long-term potentiation (LTP) at corticostriatal synapses depending on the subtype of glutamate receptor activated during the induction phase of these forms of synaptic plasticity. Dopamine plays an important function in the regulation of both forms of synaptic plasticity. Dopamine denervation abolishes the physiological corticostriatal plasticity by producing biochemical and morphological changes within the striatum. We have recently observed a 'pathological' form of LTP at the corticostriatal synapse during energy deprivation. We speculate that this 'pathological' LTP, depending on the activation of NMDA glutamate receptors located on spiny striatal neurons, might play a role in the generation of levodopa-induced dyskinesia. SN - 0364-5134 UR - https://www.unboundmedicine.com/medline/citation/10762133/Levodopa_induced_dyskinesia:_a_pathological_form_of_striatal_synaptic_plasticity L2 - https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0364-5134&date=2000&volume=47&issue=4 Suppl 1&spage=S60 DB - PRIME DP - Unbound Medicine ER -