Tags

Type your tag names separated by a space and hit enter

Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
Rapid Commun Mass Spectrom. 2000; 14(7):608-15.RC

Abstract

A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils, and, when fully validated by comparison with standard analytical methodologies, should provide a relatively fast quantitative measurement of fatty acid mixtures and/or soap formulations that contain saturated and unsaturated hydrocarbon moieties.

Authors+Show Affiliations

Department of Chemistry, Howard University, Washington, DC 20059, USA. fayorinde@howard.eduNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

10775096

Citation

Ayorinde, F O., et al. "Determination of the Fatty Acid Composition of Saponified Vegetable Oils Using Matrix-assisted Laser Desorption/ionization Time-of-flight Mass Spectrometry." Rapid Communications in Mass Spectrometry : RCM, vol. 14, no. 7, 2000, pp. 608-15.
Ayorinde FO, Garvin K, Saeed K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(7):608-15.
Ayorinde, F. O., Garvin, K., & Saeed, K. (2000). Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry : RCM, 14(7), 608-15.
Ayorinde FO, Garvin K, Saeed K. Determination of the Fatty Acid Composition of Saponified Vegetable Oils Using Matrix-assisted Laser Desorption/ionization Time-of-flight Mass Spectrometry. Rapid Commun Mass Spectrom. 2000;14(7):608-15. PubMed PMID: 10775096.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. AU - Ayorinde,F O, AU - Garvin,K, AU - Saeed,K, PY - 2000/4/25/pubmed PY - 2000/6/8/medline PY - 2000/4/25/entrez SP - 608 EP - 15 JF - Rapid communications in mass spectrometry : RCM JO - Rapid Commun Mass Spectrom VL - 14 IS - 7 N2 - A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils, and, when fully validated by comparison with standard analytical methodologies, should provide a relatively fast quantitative measurement of fatty acid mixtures and/or soap formulations that contain saturated and unsaturated hydrocarbon moieties. SN - 0951-4198 UR - https://www.unboundmedicine.com/medline/citation/10775096/Determination_of_the_fatty_acid_composition_of_saponified_vegetable_oils_using_matrix_assisted_laser_desorption/ionization_time_of_flight_mass_spectrometry_ L2 - https://doi.org/10.1002/(SICI)1097-0231(20000415)14:7<608::AID-RCM918>3.0.CO;2-4 DB - PRIME DP - Unbound Medicine ER -