Tags

Type your tag names separated by a space and hit enter

Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF.
Exp Neurol. 2000 Jul; 164(1):15-24.EN

Abstract

Local delivery of therapeutic molecules represents one of the limiting factors for the treatment of neurodegenerative disorders. In vivo gene transfer using viral vectors constitutes a powerful strategy to overcome this limitation. The aim of the present study was to validate the lentiviral vector as a gene delivery system in the mouse midbrain in the perspective of screening biotherapeutic molecules in mouse models of Parkinson's disease. A preliminary study with a LacZ-encoding vector injected above the substantia nigra of C57BL/6j mice indicated that lentiviral vectors can infect approximately 40,000 cells and diffuse over long distances. Based on these results, glial cell line-derived neurotrophic factor (GDNF) was assessed as a neuroprotective molecule in a 6-hydroxydopamine model of Parkinson's disease. Lentiviral vectors carrying the cDNA for GDNF or mutated GDNF were unilaterally injected above the substantia nigra of C57BL/6j mice. Two weeks later, the animals were lesioned ipsilaterally with 6-hydroxydopamine into the striatum. Apomorphine-induced rotation was significantly decreased in the GDNF-injected group compared to control animals. Moreover, GDNF efficiently protected 69.5% of the tyrosine hydroxylase-positive cells in the substantia nigra against 6-hydroxydopamine-induced toxicity compared to 33.1% with control mutated GDNF. These data indicate that lentiviral vectors constitute a powerful gene delivery system for the screening of therapeutic molecules in mouse models of Parkinson's disease.

Authors+Show Affiliations

Division of Surgical Research and Gene Therapy Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

10877911

Citation

Bensadoun, J C., et al. "Lentiviral Vectors as a Gene Delivery System in the Mouse Midbrain: Cellular and Behavioral Improvements in a 6-OHDA Model of Parkinson's Disease Using GDNF." Experimental Neurology, vol. 164, no. 1, 2000, pp. 15-24.
Bensadoun JC, Déglon N, Tseng JL, et al. Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. Exp Neurol. 2000;164(1):15-24.
Bensadoun, J. C., Déglon, N., Tseng, J. L., Ridet, J. L., Zurn, A. D., & Aebischer, P. (2000). Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. Experimental Neurology, 164(1), 15-24.
Bensadoun JC, et al. Lentiviral Vectors as a Gene Delivery System in the Mouse Midbrain: Cellular and Behavioral Improvements in a 6-OHDA Model of Parkinson's Disease Using GDNF. Exp Neurol. 2000;164(1):15-24. PubMed PMID: 10877911.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. AU - Bensadoun,J C, AU - Déglon,N, AU - Tseng,J L, AU - Ridet,J L, AU - Zurn,A D, AU - Aebischer,P, PY - 2000/7/6/pubmed PY - 2000/8/19/medline PY - 2000/7/6/entrez SP - 15 EP - 24 JF - Experimental neurology JO - Exp Neurol VL - 164 IS - 1 N2 - Local delivery of therapeutic molecules represents one of the limiting factors for the treatment of neurodegenerative disorders. In vivo gene transfer using viral vectors constitutes a powerful strategy to overcome this limitation. The aim of the present study was to validate the lentiviral vector as a gene delivery system in the mouse midbrain in the perspective of screening biotherapeutic molecules in mouse models of Parkinson's disease. A preliminary study with a LacZ-encoding vector injected above the substantia nigra of C57BL/6j mice indicated that lentiviral vectors can infect approximately 40,000 cells and diffuse over long distances. Based on these results, glial cell line-derived neurotrophic factor (GDNF) was assessed as a neuroprotective molecule in a 6-hydroxydopamine model of Parkinson's disease. Lentiviral vectors carrying the cDNA for GDNF or mutated GDNF were unilaterally injected above the substantia nigra of C57BL/6j mice. Two weeks later, the animals were lesioned ipsilaterally with 6-hydroxydopamine into the striatum. Apomorphine-induced rotation was significantly decreased in the GDNF-injected group compared to control animals. Moreover, GDNF efficiently protected 69.5% of the tyrosine hydroxylase-positive cells in the substantia nigra against 6-hydroxydopamine-induced toxicity compared to 33.1% with control mutated GDNF. These data indicate that lentiviral vectors constitute a powerful gene delivery system for the screening of therapeutic molecules in mouse models of Parkinson's disease. SN - 0014-4886 UR - https://www.unboundmedicine.com/medline/citation/10877911/Lentiviral_vectors_as_a_gene_delivery_system_in_the_mouse_midbrain:_cellular_and_behavioral_improvements_in_a_6_OHDA_model_of_Parkinson's_disease_using_GDNF_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0014-4886(00)97409-0 DB - PRIME DP - Unbound Medicine ER -