Tags

Type your tag names separated by a space and hit enter

Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding.
Mol Cell Biol. 2000 Aug; 20(15):5415-24.MC

Abstract

Almost all small eukaryotic RNAs are processed from transiently stabilized 3'-extended forms. A key question is how and why such intermediates are stabilized and how they can then be processed to the mature RNA. Here we report that yeast U3 is also processed from a 3'-extended precursor. The major 3'-extended forms of U3 (U3-3'I and -II) lack the cap trimethylation present in mature U3 and are not associated with small nucleolar RNP (snoRNP) proteins that bind mature U3, i.e., Nop1p, Nop56p, and Nop58p. Depletion of Nop58p leads to the loss of mature U3 but increases the level of U3-3'I and -II, indicating a requirement for the snoRNP proteins for final maturation. Pre-U3 is cleaved by the endonuclease Rnt1p, but U3-3'I and -II do not extend to the Rnt1p cleavage sites. Rather, they terminate at poly(U) tracts, suggesting that they might be bound by Lhp1p (the yeast homologue of La). Immunoprecipitation of Lhp1p fused to Staphylococcus aureus protein A resulted in coprecipitation of both U3-3'I and -II. Deletion of LHP1, which is nonessential, led to the loss of U3-3'I and -II. We conclude that pre-U3 is cleaved by Rnt1p, followed by exonuclease digestion to U3-3'I and -II. These species are stabilized against continued degradation by binding of Lhp1p. Displacement of Lhp1p by binding of the snoRNP proteins allows final maturation, which involves the exosome complex of 3'-->5' exonucleases.

Authors+Show Affiliations

Wellcome Trust Centre for Cell Biology, ICMB, The University of Edinburgh, Edinburgh EH9 3JR, Scotland.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

10891482

Citation

Kufel, J, et al. "Precursors to the U3 Small Nucleolar RNA Lack Small Nucleolar RNP Proteins but Are Stabilized By La Binding." Molecular and Cellular Biology, vol. 20, no. 15, 2000, pp. 5415-24.
Kufel J, Allmang C, Chanfreau G, et al. Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding. Mol Cell Biol. 2000;20(15):5415-24.
Kufel, J., Allmang, C., Chanfreau, G., Petfalski, E., Lafontaine, D. L., & Tollervey, D. (2000). Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding. Molecular and Cellular Biology, 20(15), 5415-24.
Kufel J, et al. Precursors to the U3 Small Nucleolar RNA Lack Small Nucleolar RNP Proteins but Are Stabilized By La Binding. Mol Cell Biol. 2000;20(15):5415-24. PubMed PMID: 10891482.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding. AU - Kufel,J, AU - Allmang,C, AU - Chanfreau,G, AU - Petfalski,E, AU - Lafontaine,D L, AU - Tollervey,D, PY - 2000/7/13/pubmed PY - 2000/8/12/medline PY - 2000/7/13/entrez SP - 5415 EP - 24 JF - Molecular and cellular biology JO - Mol Cell Biol VL - 20 IS - 15 N2 - Almost all small eukaryotic RNAs are processed from transiently stabilized 3'-extended forms. A key question is how and why such intermediates are stabilized and how they can then be processed to the mature RNA. Here we report that yeast U3 is also processed from a 3'-extended precursor. The major 3'-extended forms of U3 (U3-3'I and -II) lack the cap trimethylation present in mature U3 and are not associated with small nucleolar RNP (snoRNP) proteins that bind mature U3, i.e., Nop1p, Nop56p, and Nop58p. Depletion of Nop58p leads to the loss of mature U3 but increases the level of U3-3'I and -II, indicating a requirement for the snoRNP proteins for final maturation. Pre-U3 is cleaved by the endonuclease Rnt1p, but U3-3'I and -II do not extend to the Rnt1p cleavage sites. Rather, they terminate at poly(U) tracts, suggesting that they might be bound by Lhp1p (the yeast homologue of La). Immunoprecipitation of Lhp1p fused to Staphylococcus aureus protein A resulted in coprecipitation of both U3-3'I and -II. Deletion of LHP1, which is nonessential, led to the loss of U3-3'I and -II. We conclude that pre-U3 is cleaved by Rnt1p, followed by exonuclease digestion to U3-3'I and -II. These species are stabilized against continued degradation by binding of Lhp1p. Displacement of Lhp1p by binding of the snoRNP proteins allows final maturation, which involves the exosome complex of 3'-->5' exonucleases. SN - 0270-7306 UR - https://www.unboundmedicine.com/medline/citation/10891482/Precursors_to_the_U3_small_nucleolar_RNA_lack_small_nucleolar_RNP_proteins_but_are_stabilized_by_La_binding_ L2 - https://journals.asm.org/doi/10.1128/MCB.20.15.5415-5424.2000?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -