Tags

Type your tag names separated by a space and hit enter

Effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes.
Br J Pharmacol. 2000 Aug; 130(8):1753-66.BJ

Abstract

BDF 9198 (a congener of DPI 201 - 106 and BDF 9148) was found to be a positive inotrope on guinea-pig isolated ventricular muscle strips. The effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes were studied using the whole cell patch clamp method. In normal external solution, at 37 degrees C, action potential duration at 50% repolarization (APD(50)) was 167.4+/-8.36 ms (n=37). BDF 9198 produced a concentration-dependent increase in APD(50) (no significant increase at 1x10(-10) M; and APD(50) values of 273.03+/-35.8 ms at 1x10(-9) M; n=6, P<0.01 and 694.7+/-86.3 ms at 1x10(-7) M; P<0.001, n=7). At higher concentrations in the range tested, BDF 9198 also induced early and delayed and after-depolarizations. Qualitative measurements of I(Na) with physiological [Na](o) showed prolongation of the current by BDF 9198, and the appearance of transient oscillatory inward currents at high concentrations. Quantitative recording conditions for I(Na) were established using low external [Na] and by making measurements at room temperature. The current - voltage relation, activation parameters and time-course of I(Na) were similar before and after a partial blocking dose of Tetrodotoxin (TTX, 1 microM), despite a 2 fold difference in current amplitude. This suggests that voltage-clamp during flow of I(Na) was adequately maintained under our conditions. Selective measurements of I(Na) at room temperature showed that BDF 9198 induced a concentration-dependent, sustained component of I(Na) (I(Late)) and caused a slight left-ward shift in the current - voltage relation for peak current. The drug-induced I(Late) showed a similar voltage dependence to peak current in the presence of BDF 9198. Both peak current and I(Late) were abolished by 30 microM TTX and were sensitive to external [Na]. Inactivation of control I(Na) during a 200 ms test pulse to -30 mV followed a bi-exponential time-course. In addition to inducing a sustained current component, BDF 9198 left the magnitude of the fast inactivation time-constant unchanged, but increased the magnitude of the slow inactivation time-constant. Additional experiments with a longer pulse (1 s) raised the possibility that in the presence of BDF 9198, I(Na) inactivation may be comprised of more than two phases. No significant effects of 1x10(-6) M BDF 9198 were observed on the L-type calcium current, or delayed and inward rectifying potassium currents measured at 37 degrees C. It is concluded that the prolongation of APD(50) by BDF 9198 resulted from selective modulation of I(Na). Reduced current inactivation induced a persistent I(Na), increasing the net depolarizing current during the action potential. This action of the drug indicates a potential for 'QT prolongation' of the ECG. The observation of after-depolarizations suggests a potential for proarrhythmia at some drug concentrations.

Authors+Show Affiliations

Department of Physiology and Cardiovascular Research Laboratories, School of Medical Sciences, University Walk, Bristol, BS8 1TD.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

10952663

Citation

Yuill, K H., et al. "Effects of BDF 9198 On Action Potentials and Ionic Currents From Guinea-pig Isolated Ventricular Myocytes." British Journal of Pharmacology, vol. 130, no. 8, 2000, pp. 1753-66.
Yuill KH, Convery MK, Dooley PC, et al. Effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes. Br J Pharmacol. 2000;130(8):1753-66.
Yuill, K. H., Convery, M. K., Dooley, P. C., Doggrell, S. A., & Hancox, J. C. (2000). Effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes. British Journal of Pharmacology, 130(8), 1753-66.
Yuill KH, et al. Effects of BDF 9198 On Action Potentials and Ionic Currents From Guinea-pig Isolated Ventricular Myocytes. Br J Pharmacol. 2000;130(8):1753-66. PubMed PMID: 10952663.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes. AU - Yuill,K H, AU - Convery,M K, AU - Dooley,P C, AU - Doggrell,S A, AU - Hancox,J C, PY - 2000/8/22/pubmed PY - 2001/3/3/medline PY - 2000/8/22/entrez SP - 1753 EP - 66 JF - British journal of pharmacology JO - Br J Pharmacol VL - 130 IS - 8 N2 - BDF 9198 (a congener of DPI 201 - 106 and BDF 9148) was found to be a positive inotrope on guinea-pig isolated ventricular muscle strips. The effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes were studied using the whole cell patch clamp method. In normal external solution, at 37 degrees C, action potential duration at 50% repolarization (APD(50)) was 167.4+/-8.36 ms (n=37). BDF 9198 produced a concentration-dependent increase in APD(50) (no significant increase at 1x10(-10) M; and APD(50) values of 273.03+/-35.8 ms at 1x10(-9) M; n=6, P<0.01 and 694.7+/-86.3 ms at 1x10(-7) M; P<0.001, n=7). At higher concentrations in the range tested, BDF 9198 also induced early and delayed and after-depolarizations. Qualitative measurements of I(Na) with physiological [Na](o) showed prolongation of the current by BDF 9198, and the appearance of transient oscillatory inward currents at high concentrations. Quantitative recording conditions for I(Na) were established using low external [Na] and by making measurements at room temperature. The current - voltage relation, activation parameters and time-course of I(Na) were similar before and after a partial blocking dose of Tetrodotoxin (TTX, 1 microM), despite a 2 fold difference in current amplitude. This suggests that voltage-clamp during flow of I(Na) was adequately maintained under our conditions. Selective measurements of I(Na) at room temperature showed that BDF 9198 induced a concentration-dependent, sustained component of I(Na) (I(Late)) and caused a slight left-ward shift in the current - voltage relation for peak current. The drug-induced I(Late) showed a similar voltage dependence to peak current in the presence of BDF 9198. Both peak current and I(Late) were abolished by 30 microM TTX and were sensitive to external [Na]. Inactivation of control I(Na) during a 200 ms test pulse to -30 mV followed a bi-exponential time-course. In addition to inducing a sustained current component, BDF 9198 left the magnitude of the fast inactivation time-constant unchanged, but increased the magnitude of the slow inactivation time-constant. Additional experiments with a longer pulse (1 s) raised the possibility that in the presence of BDF 9198, I(Na) inactivation may be comprised of more than two phases. No significant effects of 1x10(-6) M BDF 9198 were observed on the L-type calcium current, or delayed and inward rectifying potassium currents measured at 37 degrees C. It is concluded that the prolongation of APD(50) by BDF 9198 resulted from selective modulation of I(Na). Reduced current inactivation induced a persistent I(Na), increasing the net depolarizing current during the action potential. This action of the drug indicates a potential for 'QT prolongation' of the ECG. The observation of after-depolarizations suggests a potential for proarrhythmia at some drug concentrations. SN - 0007-1188 UR - https://www.unboundmedicine.com/medline/citation/10952663/Effects_of_BDF_9198_on_action_potentials_and_ionic_currents_from_guinea_pig_isolated_ventricular_myocytes_ L2 - https://doi.org/10.1038/sj.bjp.0703476 DB - PRIME DP - Unbound Medicine ER -