Tags

Type your tag names separated by a space and hit enter

Evidence of postprandial absorption of olive oil phenols in humans.
Nutr Metab Cardiovasc Dis. 2000 Jun; 10(3):111-20.NM

Abstract

BACKGROUND AND AIM

Olive oil phenols are potent antioxidants in vitro. If this were to be also demonstrated in vivo, it would help to explain the beneficial effects of this typical ingredient of the Mediterranean diet. This study was designed to determine the presence in lipoprotein fractions of two phenolic compounds peculiar to extra virgin olive oil, namely tyrosol and OH-tyrosol, and whether their absorption induces an antioxidant effect in vivo.

METHODS AND RESULTS

Two trials were performed. In the first (Long-term), 14 healthy volunteers followed two diets, each for one month. The only difference between the diets was that the first supplied 50 g of extra virgin olive oil per day, where-as the second one supplied 50 g of refined olive oil with no simple phenols, as demonstrated by GC-MS analysis. There were no changes in LDL oxidizability and tyrosol and OH-tyrosol were not recovered in lipoproteins and plasma from fasting samples drawn at the end of each diet period. In the second study (Postprandial), eight healthy volunteers received an oral fat load consisting of 100 g of extra virgin olive oil. Blood was drawn at times 0', 30', 60', 120', 240', 360', and major plasma lipoprotein classes were separated. The concentration of tyrosol, OH-tyrosol and vitamin E was determined in lipoprotein fractions. Plasma antioxidant capacity was measured by a crocin-bleaching test and expressed as mM Trolox C equivalents. Tyrosol and OH-tyrosol were recovered in all lipoprotein fractions, except VLDL, with concentrations peaking between 60' and 120'. However, a very high variability in tyrosol and OH-tyrosol absorption was observed among subjects. Vitamin E content of LDL and HDL did not vary significantly throughout the study. Plasma antioxidant capacity increased significantly at time 120' (baseline 0.96 mM Trolox; 120' 1.19 mM Trolox; p = 0.02), and then returned almost to baseline values after 360' (1.1 mM Trolox).

CONCLUSIONS

These findings suggest that phenolic compounds in olive oil are absorbed from the intestine, though not through a pathway dependent on chylomicron formation, and may exert a significant antioxidant effect in vivo, probably in the postprandial phase.

Authors+Show Affiliations

Department of Internal Medicine, University of Padua, Italy.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Clinical Trial
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

11006919

Citation

Bonanome, A, et al. "Evidence of Postprandial Absorption of Olive Oil Phenols in Humans." Nutrition, Metabolism, and Cardiovascular Diseases : NMCD, vol. 10, no. 3, 2000, pp. 111-20.
Bonanome A, Pagnan A, Caruso D, et al. Evidence of postprandial absorption of olive oil phenols in humans. Nutr Metab Cardiovasc Dis. 2000;10(3):111-20.
Bonanome, A., Pagnan, A., Caruso, D., Toia, A., Xamin, A., Fedeli, E., Berra, B., Zamburlini, A., Ursini, F., & Galli, G. (2000). Evidence of postprandial absorption of olive oil phenols in humans. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD, 10(3), 111-20.
Bonanome A, et al. Evidence of Postprandial Absorption of Olive Oil Phenols in Humans. Nutr Metab Cardiovasc Dis. 2000;10(3):111-20. PubMed PMID: 11006919.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Evidence of postprandial absorption of olive oil phenols in humans. AU - Bonanome,A, AU - Pagnan,A, AU - Caruso,D, AU - Toia,A, AU - Xamin,A, AU - Fedeli,E, AU - Berra,B, AU - Zamburlini,A, AU - Ursini,F, AU - Galli,G, PY - 2000/9/28/pubmed PY - 2001/3/7/medline PY - 2000/9/28/entrez SP - 111 EP - 20 JF - Nutrition, metabolism, and cardiovascular diseases : NMCD JO - Nutr Metab Cardiovasc Dis VL - 10 IS - 3 N2 - BACKGROUND AND AIM: Olive oil phenols are potent antioxidants in vitro. If this were to be also demonstrated in vivo, it would help to explain the beneficial effects of this typical ingredient of the Mediterranean diet. This study was designed to determine the presence in lipoprotein fractions of two phenolic compounds peculiar to extra virgin olive oil, namely tyrosol and OH-tyrosol, and whether their absorption induces an antioxidant effect in vivo. METHODS AND RESULTS: Two trials were performed. In the first (Long-term), 14 healthy volunteers followed two diets, each for one month. The only difference between the diets was that the first supplied 50 g of extra virgin olive oil per day, where-as the second one supplied 50 g of refined olive oil with no simple phenols, as demonstrated by GC-MS analysis. There were no changes in LDL oxidizability and tyrosol and OH-tyrosol were not recovered in lipoproteins and plasma from fasting samples drawn at the end of each diet period. In the second study (Postprandial), eight healthy volunteers received an oral fat load consisting of 100 g of extra virgin olive oil. Blood was drawn at times 0', 30', 60', 120', 240', 360', and major plasma lipoprotein classes were separated. The concentration of tyrosol, OH-tyrosol and vitamin E was determined in lipoprotein fractions. Plasma antioxidant capacity was measured by a crocin-bleaching test and expressed as mM Trolox C equivalents. Tyrosol and OH-tyrosol were recovered in all lipoprotein fractions, except VLDL, with concentrations peaking between 60' and 120'. However, a very high variability in tyrosol and OH-tyrosol absorption was observed among subjects. Vitamin E content of LDL and HDL did not vary significantly throughout the study. Plasma antioxidant capacity increased significantly at time 120' (baseline 0.96 mM Trolox; 120' 1.19 mM Trolox; p = 0.02), and then returned almost to baseline values after 360' (1.1 mM Trolox). CONCLUSIONS: These findings suggest that phenolic compounds in olive oil are absorbed from the intestine, though not through a pathway dependent on chylomicron formation, and may exert a significant antioxidant effect in vivo, probably in the postprandial phase. SN - 0939-4753 UR - https://www.unboundmedicine.com/medline/citation/11006919/Evidence_of_postprandial_absorption_of_olive_oil_phenols_in_humans_ L2 - https://medlineplus.gov/antioxidants.html DB - PRIME DP - Unbound Medicine ER -