Tags

Type your tag names separated by a space and hit enter

Effects of growth hormone on leptin metabolism and energy expenditure in hemodialysis patients with protein-calorie malnutrition.
J Am Soc Nephrol. 2000 Nov; 11(11):2106-13.JA

Abstract

The relationships among growth hormone (GH), leptin, and resting energy expenditure (REE) are not understood. It has been reported that in malnourished hemodialysis patients, GH increases muscle protein synthesis, a process that requires energy. The present study evaluated the arterial levels and the forearm exchange of leptin, as well as the REE of the same patients during their participation in the same study, in four sequential 6-wk periods: I, baseline; II, GH treatment; III, washout; and IV, GH + intradialytic parenteral nutrition. During periods II and IV, patients received GH (5 mg three times per week). REE rose by 5% in period II, declined during period III, and rose by 7% during period IV. Basal leptin levels were low (2.0 +/- 0.19 ng/L). Insulin and leptin levels, as well as leptin release from the forearm, were unchanged during periods I through III but rose (+ 36%; P: < 0.05) during period IV. Changes in arterial leptin were directly related to changes in forearm leptin release (P: < 0.002), indicating a role of leptin production by peripheral tissues on leptinemia. Changes in leptin release were directly related to insulin (P: < 0.001) and, less consistently, to insulin-like growth factor-binding protein-1 levels (P: < 0.02). Similarly, variations in leptin levels were directly related to insulin (P: < 0.01). Variations in REE were not related to variations in leptin or insulin levels but to changes in muscle protein synthesis (P: < 0.025). The data show that in malnourished hemodialysis patients, treatment with GH is not invariably associated with an increase in leptin production. An increase in leptin release by peripheral tissues and leptin levels occurs only in the setting of hyperinsulinemia. The increase in REE that is induced by treatment with GH is not dependent on changes in leptin but is largely accounted for by the energy cost of the stimulation of muscle protein synthesis.

Authors+Show Affiliations

Division of Nephrology, Department of Internal Medicine, University of Genoa, Genoa, Italy. gari@unige.itNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

11053487

Citation

Garibotto, G, et al. "Effects of Growth Hormone On Leptin Metabolism and Energy Expenditure in Hemodialysis Patients With Protein-calorie Malnutrition." Journal of the American Society of Nephrology : JASN, vol. 11, no. 11, 2000, pp. 2106-13.
Garibotto G, Barreca A, Sofia A, et al. Effects of growth hormone on leptin metabolism and energy expenditure in hemodialysis patients with protein-calorie malnutrition. J Am Soc Nephrol. 2000;11(11):2106-13.
Garibotto, G., Barreca, A., Sofia, A., Russo, R., Fiorini, F., Cappelli, G., Cavatorta, F., Cesarone, A., Franceschini, R., Sacco, P., Minuto, F., & Barreca, T. (2000). Effects of growth hormone on leptin metabolism and energy expenditure in hemodialysis patients with protein-calorie malnutrition. Journal of the American Society of Nephrology : JASN, 11(11), 2106-13.
Garibotto G, et al. Effects of Growth Hormone On Leptin Metabolism and Energy Expenditure in Hemodialysis Patients With Protein-calorie Malnutrition. J Am Soc Nephrol. 2000;11(11):2106-13. PubMed PMID: 11053487.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effects of growth hormone on leptin metabolism and energy expenditure in hemodialysis patients with protein-calorie malnutrition. AU - Garibotto,G, AU - Barreca,A, AU - Sofia,A, AU - Russo,R, AU - Fiorini,F, AU - Cappelli,G, AU - Cavatorta,F, AU - Cesarone,A, AU - Franceschini,R, AU - Sacco,P, AU - Minuto,F, AU - Barreca,T, PY - 2000/10/29/pubmed PY - 2001/2/28/medline PY - 2000/10/29/entrez SP - 2106 EP - 13 JF - Journal of the American Society of Nephrology : JASN JO - J. Am. Soc. Nephrol. VL - 11 IS - 11 N2 - The relationships among growth hormone (GH), leptin, and resting energy expenditure (REE) are not understood. It has been reported that in malnourished hemodialysis patients, GH increases muscle protein synthesis, a process that requires energy. The present study evaluated the arterial levels and the forearm exchange of leptin, as well as the REE of the same patients during their participation in the same study, in four sequential 6-wk periods: I, baseline; II, GH treatment; III, washout; and IV, GH + intradialytic parenteral nutrition. During periods II and IV, patients received GH (5 mg three times per week). REE rose by 5% in period II, declined during period III, and rose by 7% during period IV. Basal leptin levels were low (2.0 +/- 0.19 ng/L). Insulin and leptin levels, as well as leptin release from the forearm, were unchanged during periods I through III but rose (+ 36%; P: < 0.05) during period IV. Changes in arterial leptin were directly related to changes in forearm leptin release (P: < 0.002), indicating a role of leptin production by peripheral tissues on leptinemia. Changes in leptin release were directly related to insulin (P: < 0.001) and, less consistently, to insulin-like growth factor-binding protein-1 levels (P: < 0.02). Similarly, variations in leptin levels were directly related to insulin (P: < 0.01). Variations in REE were not related to variations in leptin or insulin levels but to changes in muscle protein synthesis (P: < 0.025). The data show that in malnourished hemodialysis patients, treatment with GH is not invariably associated with an increase in leptin production. An increase in leptin release by peripheral tissues and leptin levels occurs only in the setting of hyperinsulinemia. The increase in REE that is induced by treatment with GH is not dependent on changes in leptin but is largely accounted for by the energy cost of the stimulation of muscle protein synthesis. SN - 1046-6673 UR - https://www.unboundmedicine.com/medline/citation/11053487/Effects_of_growth_hormone_on_leptin_metabolism_and_energy_expenditure_in_hemodialysis_patients_with_protein_calorie_malnutrition_ L2 - http://jasn.asnjournals.org/cgi/pmidlookup?view=long&amp;pmid=11053487 DB - PRIME DP - Unbound Medicine ER -