Tags

Type your tag names separated by a space and hit enter

Entropic stabilization of the tryptophan synthase alpha-subunit from a hyperthermophile, Pyrococcus furiosus. X-ray analysis and calorimetry.
J Biol Chem. 2001 Apr 06; 276(14):11062-71.JB

Abstract

The structure of the tryptophan synthase alpha-subunit from Pyrococcus furiosus was determined by x-ray analysis at 2.0-A resolution, and its stability was examined by differential scanning calorimetry. Although the structure of the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium has been already determined, this is the first report of the structure of the alpha-subunit alone. The alpha-subunit from P. furiosus (Pf-alpha-subunit) lacked 12 and 6 residues at the N and C termini, respectively, and one residue each in two loop regions as compared with that from S. typhimurium (St-alpha-subunit), resulting in the absence of an N-terminal helix and the shortening of a C-terminal helix. The structure of the Pf-alpha-subunit was essentially similar to that of the St-alpha-subunit in the alpha(2)beta(2) complex. The differences between both structures were discussed in connection with the higher stability of the Pf-alpha-subunit and the complex formation of the alpha- and beta-subunits. Calorimetric results indicated that the Pf-alpha-subunit has extremely high thermostability and that its higher stability is caused by an entropic effect. On the basis of structural information of both proteins, we analyzed the contributions of each stabilization factor and could conclude that hydrophobic interactions in the protein interior do not contribute to the higher stability of the Pf-alpha-subunit. Rather, the increase in ion pairs, decrease in cavity volume, and entropic effects due to shortening of the polypeptide chain play important roles in extremely high stability in Pf-alpha-subunit.

Authors+Show Affiliations

Graduate School of Pharmaceutical Sciences, and Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

11118452

Citation

Yamagata, Y, et al. "Entropic Stabilization of the Tryptophan Synthase Alpha-subunit From a Hyperthermophile, Pyrococcus Furiosus. X-ray Analysis and Calorimetry." The Journal of Biological Chemistry, vol. 276, no. 14, 2001, pp. 11062-71.
Yamagata Y, Ogasahara K, Hioki Y, et al. Entropic stabilization of the tryptophan synthase alpha-subunit from a hyperthermophile, Pyrococcus furiosus. X-ray analysis and calorimetry. J Biol Chem. 2001;276(14):11062-71.
Yamagata, Y., Ogasahara, K., Hioki, Y., Lee, S. J., Nakagawa, A., Nakamura, H., Ishida, M., Kuramitsu, S., & Yutani, K. (2001). Entropic stabilization of the tryptophan synthase alpha-subunit from a hyperthermophile, Pyrococcus furiosus. X-ray analysis and calorimetry. The Journal of Biological Chemistry, 276(14), 11062-71.
Yamagata Y, et al. Entropic Stabilization of the Tryptophan Synthase Alpha-subunit From a Hyperthermophile, Pyrococcus Furiosus. X-ray Analysis and Calorimetry. J Biol Chem. 2001 Apr 6;276(14):11062-71. PubMed PMID: 11118452.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Entropic stabilization of the tryptophan synthase alpha-subunit from a hyperthermophile, Pyrococcus furiosus. X-ray analysis and calorimetry. AU - Yamagata,Y, AU - Ogasahara,K, AU - Hioki,Y, AU - Lee,S J, AU - Nakagawa,A, AU - Nakamura,H, AU - Ishida,M, AU - Kuramitsu,S, AU - Yutani,K, Y1 - 2000/12/15/ PY - 2000/12/29/pubmed PY - 2001/5/26/medline PY - 2000/12/29/entrez SP - 11062 EP - 71 JF - The Journal of biological chemistry JO - J Biol Chem VL - 276 IS - 14 N2 - The structure of the tryptophan synthase alpha-subunit from Pyrococcus furiosus was determined by x-ray analysis at 2.0-A resolution, and its stability was examined by differential scanning calorimetry. Although the structure of the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium has been already determined, this is the first report of the structure of the alpha-subunit alone. The alpha-subunit from P. furiosus (Pf-alpha-subunit) lacked 12 and 6 residues at the N and C termini, respectively, and one residue each in two loop regions as compared with that from S. typhimurium (St-alpha-subunit), resulting in the absence of an N-terminal helix and the shortening of a C-terminal helix. The structure of the Pf-alpha-subunit was essentially similar to that of the St-alpha-subunit in the alpha(2)beta(2) complex. The differences between both structures were discussed in connection with the higher stability of the Pf-alpha-subunit and the complex formation of the alpha- and beta-subunits. Calorimetric results indicated that the Pf-alpha-subunit has extremely high thermostability and that its higher stability is caused by an entropic effect. On the basis of structural information of both proteins, we analyzed the contributions of each stabilization factor and could conclude that hydrophobic interactions in the protein interior do not contribute to the higher stability of the Pf-alpha-subunit. Rather, the increase in ion pairs, decrease in cavity volume, and entropic effects due to shortening of the polypeptide chain play important roles in extremely high stability in Pf-alpha-subunit. SN - 0021-9258 UR - https://www.unboundmedicine.com/medline/citation/11118452/Entropic_stabilization_of_the_tryptophan_synthase_alpha_subunit_from_a_hyperthermophile_Pyrococcus_furiosus__X_ray_analysis_and_calorimetry_ DB - PRIME DP - Unbound Medicine ER -