Tags

Type your tag names separated by a space and hit enter

Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae).
J Exp Biol. 2001 Apr; 204(Pt 8):1421-31.JE

Abstract

To test the role of constructional and dimensional factors in the generation of friction force by systems of setose attachment pads, six species of syrphid fly (Platycheirus angustatus, Sphaerophoria scripta, Episyrphus balteatus, Eristalis tenax, Myathropa florea and Volucella pellucens) were studied using light and scanning electron microscopy. Flies were selected according to their various body mass and attachment pad dimensions. Such variables as pad area, setal density, the area of a single setal tip and body mass were individually measured. A centrifugal force tester, equipped with a fibre-optic sensor, was used to measure the friction forces of the pads on a smooth horizontal surface made of polyvinylchloride. Friction force, which is the resistance force of the insect mass against the sum of centrifugal and tangential forces, was greater in heavier insects such as Er. tenax, M. florea and V. pellucens. Although lighter species generated lower frictional forces, the acceleration required to detach an insect was greater in smaller species. The area of attachment pads, setal tip area and setal density differed significantly in the species studied, and the dependence of these variables on body mass was significant. The frictional properties of the material of the setal tips were not dependent on the dimensions of the fly species. Similar results were obtained for the frictional properties of the pulvillus as a whole. Thus, the properties of the secretion and the mechanical properties of the material of the setal tips are approximately constant among the species studied. It is concluded that differences in friction force must be related mainly to variations in the real contact area generated by the pad on the smooth surface. The real contact area can be estimated as the summed area of the broadened setal tips of the pad in contact with the surface. The real contact area depends on such morphological variables as setal density and the area of a single setal tip. Although individual variables vary among flies with different dimensions, they usually compensate such that smaller setal tip area is partially compensated for by higher setal density.

Authors+Show Affiliations

Biological Microtribology Group, Biochemistry Department, Max-Planck-Institute of Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany. Stas.Gorb@tuebingen.mpg.deNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

11273804

Citation

Gorb, S, et al. "Scale Effects On the Attachment Pads and Friction Forces in Syrphid Flies (Diptera, Syrphidae)." The Journal of Experimental Biology, vol. 204, no. Pt 8, 2001, pp. 1421-31.
Gorb S, Gorb E, Kastner V. Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). J Exp Biol. 2001;204(Pt 8):1421-31.
Gorb, S., Gorb, E., & Kastner, V. (2001). Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). The Journal of Experimental Biology, 204(Pt 8), 1421-31.
Gorb S, Gorb E, Kastner V. Scale Effects On the Attachment Pads and Friction Forces in Syrphid Flies (Diptera, Syrphidae). J Exp Biol. 2001;204(Pt 8):1421-31. PubMed PMID: 11273804.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). AU - Gorb,S, AU - Gorb,E, AU - Kastner,V, PY - 2001/3/29/pubmed PY - 2001/8/24/medline PY - 2001/3/29/entrez SP - 1421 EP - 31 JF - The Journal of experimental biology JO - J. Exp. Biol. VL - 204 IS - Pt 8 N2 - To test the role of constructional and dimensional factors in the generation of friction force by systems of setose attachment pads, six species of syrphid fly (Platycheirus angustatus, Sphaerophoria scripta, Episyrphus balteatus, Eristalis tenax, Myathropa florea and Volucella pellucens) were studied using light and scanning electron microscopy. Flies were selected according to their various body mass and attachment pad dimensions. Such variables as pad area, setal density, the area of a single setal tip and body mass were individually measured. A centrifugal force tester, equipped with a fibre-optic sensor, was used to measure the friction forces of the pads on a smooth horizontal surface made of polyvinylchloride. Friction force, which is the resistance force of the insect mass against the sum of centrifugal and tangential forces, was greater in heavier insects such as Er. tenax, M. florea and V. pellucens. Although lighter species generated lower frictional forces, the acceleration required to detach an insect was greater in smaller species. The area of attachment pads, setal tip area and setal density differed significantly in the species studied, and the dependence of these variables on body mass was significant. The frictional properties of the material of the setal tips were not dependent on the dimensions of the fly species. Similar results were obtained for the frictional properties of the pulvillus as a whole. Thus, the properties of the secretion and the mechanical properties of the material of the setal tips are approximately constant among the species studied. It is concluded that differences in friction force must be related mainly to variations in the real contact area generated by the pad on the smooth surface. The real contact area can be estimated as the summed area of the broadened setal tips of the pad in contact with the surface. The real contact area depends on such morphological variables as setal density and the area of a single setal tip. Although individual variables vary among flies with different dimensions, they usually compensate such that smaller setal tip area is partially compensated for by higher setal density. SN - 0022-0949 UR - https://www.unboundmedicine.com/medline/citation/11273804/Scale_effects_on_the_attachment_pads_and_friction_forces_in_syrphid_flies__Diptera_Syrphidae__ L2 - http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=11273804 DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.