Moderation of skeletal muscle reperfusion injury by a sLe(x)-glycosylated complement inhibitory protein.Am J Physiol Cell Physiol. 2001 Jul; 281(1):C224-30.AJ
The role of the sialyl Lewis(x) (sLe(x))-decorated version of soluble complement receptor type 1 (sCR1) in moderating skeletal muscle reperfusion injury, by antagonizing neutrophil endothelial selectin interaction and complement activation, is examined. Mice underwent 2 h of hindlimb ischemia and 3 h of reperfusion. Permeability index (PI) was assessed by extravasation of 125I-labeled albumin. Neutrophil depletion and complement inhibition with sCR1 reduced permeability by 72% (PI 0.81 +/- 0.10) compared with a 42% decrease (PI 1.53 +/- 0.08) observed in neutropenic mice, indicating that part of the complement-mediated injury is neutrophil independent. sCR1sLe(x) treatment reduced PI by 70% (PI 0.86 +/- 0.06), an additional 20% decrease compared with sCR1 treatment (PI 1.32 +/- 0.08). Treatment with sCR1sLe(x) 0.5 and 1 h after reperfusion reduced permeability by 63% (PI 0.09 +/- 0.07) and 52% (PI 1.24 +/- 0.09), respectively, compared with the respective decreases of 41% (PI 1.41 +/- 0.10) and 32% (PI 1.61 +/- 0.07) after sCR1 treatment. Muscle immunohistochemistry stained for sCR1 only on the vascular endothelium of sCR1sLe(x)-treated mice. In conclusion, sCR1sLe(x) is more effective than sCR1 in moderating skeletal muscle reperfusion injury.