Biosynthesis and structural characterization of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas aeruginosa from fatty acids.Int J Biol Macromol. 2001 Aug 20; 29(2):107-14.IJ
In this study, we investigated the ability of Pseudomonas aeruginosa ATCC 27853 to grow and synthesize poly(3-hydroxyalkanoates) (PHAs) from saturated fatty acids with an even number of carbon atoms, from eight to 22, and from oleic acid. In a non-limiting medium, all carbon sources but docosanoic acid supported cell growth and PHA production, with eicosanoic acid giving the highest yield. In magnesium-limiting conditions, higher yields were obtained from sources with up to 16 carbon atoms. Composition was estimated by gas chromatography of methanolyzed samples and (13)C nuclear magnetic resonance. The 3-hydroxyalkanoate units extended from hexanoate to tetradecanoate or tetradecenoate, with octanoate and decanoate as the predominant components. Weight average molecular weights ranged from 78,000 to 316,000. Fast atom bombardment mass spectrometry of partially pyrolyzed samples, coupled to statistical analysis, showed that these PHAs are random copolymers.