Tags

Type your tag names separated by a space and hit enter

Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits.
Nature. 2002 Feb 14; 415(6873):793-8.Nat

Abstract

The N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A-D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by D-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by D-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor.

Authors+Show Affiliations

Center for Neuroscience and Aging, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

11823786

Citation

Chatterton, Jon E., et al. "Excitatory Glycine Receptors Containing the NR3 Family of NMDA Receptor Subunits." Nature, vol. 415, no. 6873, 2002, pp. 793-8.
Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002;415(6873):793-8.
Chatterton, J. E., Awobuluyi, M., Premkumar, L. S., Takahashi, H., Talantova, M., Shin, Y., Cui, J., Tu, S., Sevarino, K. A., Nakanishi, N., Tong, G., Lipton, S. A., & Zhang, D. (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature, 415(6873), 793-8.
Chatterton JE, et al. Excitatory Glycine Receptors Containing the NR3 Family of NMDA Receptor Subunits. Nature. 2002 Feb 14;415(6873):793-8. PubMed PMID: 11823786.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. AU - Chatterton,Jon E, AU - Awobuluyi,Marc, AU - Premkumar,Louis S, AU - Takahashi,Hiroto, AU - Talantova,Maria, AU - Shin,Yeonsook, AU - Cui,Jiankun, AU - Tu,Shichun, AU - Sevarino,Kevin A, AU - Nakanishi,Nobuki, AU - Tong,Gang, AU - Lipton,Stuart A, AU - Zhang,Dongxian, Y1 - 2002/01/30/ PY - 2002/2/2/pubmed PY - 2002/3/16/medline PY - 2002/2/2/entrez SP - 793 EP - 8 JF - Nature JO - Nature VL - 415 IS - 6873 N2 - The N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A-D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by D-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by D-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor. SN - 0028-0836 UR - https://www.unboundmedicine.com/medline/citation/11823786/Excitatory_glycine_receptors_containing_the_NR3_family_of_NMDA_receptor_subunits_ L2 - https://doi.org/10.1038/nature715 DB - PRIME DP - Unbound Medicine ER -