Tags

Type your tag names separated by a space and hit enter

The alkaloid rutaecarpine is a selective inhibitor of cytochrome P450 1A in mouse and human liver microsomes.
Drug Metab Dispos. 2002 Mar; 30(3):349-53.DM

Abstract

Rutaecarpine, evodiamine, and dehydroevodiamine are quinazolinocarboline alkaloids isolated from a traditional Chinese medicine, Evodia rutaecarpa. The in vitro effects of these alkaloids on cytochrome P450 (P450)-catalyzed oxidations were studied using mouse and human liver microsomes. Among these alkaloids, rutaecarpine showed the most potent and selective inhibitory effect on CYP1A-catalyzed 7-methoxyresorufin O-demethylation (MROD) and 7-ethoxyresorufin O-deethylation (EROD) activities in untreated mouse liver microsomes. The IC(50) ratio of EROD to MROD was 6. For MROD activity, rutaecarpine was a noncompetitive inhibitor with a K(i) value of 39 +/- 2 nM. In contrast, rutaecarpine had no effects on benzo[a]pyrene hydroxylation (AHH), aniline hydroxylation, and nifedipine oxidation (NFO) activities. In human liver microsomes, 1 microM rutaecarpine caused 98, 91, and 77% decreases of EROD, MROD, and phenacetin O-deethylation activities, respectively. In contrast, less than 15% inhibition of AHH, tolbutamide hydroxylation, chlorzoxazone hydroxylation, and NFO activities were observed in the presence of 1 microM rutaecarpine. To understand the selectivity of inhibition of CYP1A1 and CYP1A2, inhibitory effects of rutaecarpine were studied using liver microsomes of 3-methylcholanthrene (3-MC)-treated mice and Escherichia coli membrane expressing bicistronic human CYP1A1 and CYP1A2. Similar to the CYP1A2 inhibitor furafylline, rutaecarpine preferentially inhibited MROD more than EROD and had no effect on AHH in 3-MC-treated mouse liver microsomes. For bicistronic human P450s, the IC(50) value of rutaecarpine for EROD activity of CYP1A1 was 15 times higher than the value of CYP1A2. These results indicated that rutaecarpine was a potent inhibitor of CYP1A2 in both mouse and human liver microsomes.

Authors+Show Affiliations

National Research Institute of Chinese Medicine, Taipei, Taiwan, Republic of China. ueng@cma23.nricm.edu.twNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

11854157

Citation

Ueng, Yune-Fang, et al. "The Alkaloid Rutaecarpine Is a Selective Inhibitor of Cytochrome P450 1A in Mouse and Human Liver Microsomes." Drug Metabolism and Disposition: the Biological Fate of Chemicals, vol. 30, no. 3, 2002, pp. 349-53.
Ueng YF, Jan WC, Lin LC, et al. The alkaloid rutaecarpine is a selective inhibitor of cytochrome P450 1A in mouse and human liver microsomes. Drug Metab Dispos. 2002;30(3):349-53.
Ueng, Y. F., Jan, W. C., Lin, L. C., Chen, T. L., Guengerich, F. P., & Chen, C. F. (2002). The alkaloid rutaecarpine is a selective inhibitor of cytochrome P450 1A in mouse and human liver microsomes. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 30(3), 349-53.
Ueng YF, et al. The Alkaloid Rutaecarpine Is a Selective Inhibitor of Cytochrome P450 1A in Mouse and Human Liver Microsomes. Drug Metab Dispos. 2002;30(3):349-53. PubMed PMID: 11854157.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - The alkaloid rutaecarpine is a selective inhibitor of cytochrome P450 1A in mouse and human liver microsomes. AU - Ueng,Yune-Fang, AU - Jan,Woan-Ching, AU - Lin,Lie-Chwen, AU - Chen,Ta-Liang, AU - Guengerich,F Peter, AU - Chen,Chieh-Fu, PY - 2002/2/21/pubmed PY - 2002/5/22/medline PY - 2002/2/21/entrez SP - 349 EP - 53 JF - Drug metabolism and disposition: the biological fate of chemicals JO - Drug Metab Dispos VL - 30 IS - 3 N2 - Rutaecarpine, evodiamine, and dehydroevodiamine are quinazolinocarboline alkaloids isolated from a traditional Chinese medicine, Evodia rutaecarpa. The in vitro effects of these alkaloids on cytochrome P450 (P450)-catalyzed oxidations were studied using mouse and human liver microsomes. Among these alkaloids, rutaecarpine showed the most potent and selective inhibitory effect on CYP1A-catalyzed 7-methoxyresorufin O-demethylation (MROD) and 7-ethoxyresorufin O-deethylation (EROD) activities in untreated mouse liver microsomes. The IC(50) ratio of EROD to MROD was 6. For MROD activity, rutaecarpine was a noncompetitive inhibitor with a K(i) value of 39 +/- 2 nM. In contrast, rutaecarpine had no effects on benzo[a]pyrene hydroxylation (AHH), aniline hydroxylation, and nifedipine oxidation (NFO) activities. In human liver microsomes, 1 microM rutaecarpine caused 98, 91, and 77% decreases of EROD, MROD, and phenacetin O-deethylation activities, respectively. In contrast, less than 15% inhibition of AHH, tolbutamide hydroxylation, chlorzoxazone hydroxylation, and NFO activities were observed in the presence of 1 microM rutaecarpine. To understand the selectivity of inhibition of CYP1A1 and CYP1A2, inhibitory effects of rutaecarpine were studied using liver microsomes of 3-methylcholanthrene (3-MC)-treated mice and Escherichia coli membrane expressing bicistronic human CYP1A1 and CYP1A2. Similar to the CYP1A2 inhibitor furafylline, rutaecarpine preferentially inhibited MROD more than EROD and had no effect on AHH in 3-MC-treated mouse liver microsomes. For bicistronic human P450s, the IC(50) value of rutaecarpine for EROD activity of CYP1A1 was 15 times higher than the value of CYP1A2. These results indicated that rutaecarpine was a potent inhibitor of CYP1A2 in both mouse and human liver microsomes. SN - 0090-9556 UR - https://www.unboundmedicine.com/medline/citation/11854157/The_alkaloid_rutaecarpine_is_a_selective_inhibitor_of_cytochrome_P450_1A_in_mouse_and_human_liver_microsomes_ L2 - http://dmd.aspetjournals.org/cgi/pmidlookup?view=long&pmid=11854157 DB - PRIME DP - Unbound Medicine ER -