Tags

Type your tag names separated by a space and hit enter

Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.
Electrophoresis. 2002 Oct; 23(20):3567-73.E

Abstract

The channels of microfluidic glass chips have been coated with poly(vinyl alcohol) (PVA). Applied for microchip electrophoresis, the coated devices exhibited a suppressed electroosmotic flow and improved separation performance. The superior performance of PVA-coated channels could be demonstrated by electrophoretic separations of labeled amines and by video microscopy. While a distorted sample zone is injected using uncoated channels the application of PVA-coated channels results in an improved shape of the sample zone with less band broadening. Applying PVA-coated microchips for the separation of amines labeled with Alexa Fluor 350 even sub-second separations, utilizing a separation length of only 650 microm, could be obtained, while this was not possible using uncoated devices. By using PVA-coated devices rather than an uncoated chip a threefold increase in separation efficiencies could be observed. As the electroosmotic flow (EOF) was suppressed, the anionic compounds were detected at the anode whereas the dominant EOF in uncoated devices resulted in an effective mobility to the cathode. Besides improved separation performance another important feature of the PVA-coated channels was the suppressed adsorption of fluorescent compounds in repetitive runs which results in an improved robustness and detection sensitivity. Applying PVA-coated channels, rinsing or etching steps could be omitted while this was necessary for a reliable operation of uncoated devices.

Authors+Show Affiliations

Abteilung für Chromatographie, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany. belder@mpi-muelheim.mpg.deNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

12412126

Citation

Belder, Detlev, et al. "Poly(vinyl Alcohol)-coated Microfluidic Devices for High-performance Microchip Electrophoresis." Electrophoresis, vol. 23, no. 20, 2002, pp. 3567-73.
Belder D, Deege A, Kohler F, et al. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis. Electrophoresis. 2002;23(20):3567-73.
Belder, D., Deege, A., Kohler, F., & Ludwig, M. (2002). Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis. Electrophoresis, 23(20), 3567-73.
Belder D, et al. Poly(vinyl Alcohol)-coated Microfluidic Devices for High-performance Microchip Electrophoresis. Electrophoresis. 2002;23(20):3567-73. PubMed PMID: 12412126.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis. AU - Belder,Detlev, AU - Deege,Alfred, AU - Kohler,Frank, AU - Ludwig,Martin, PY - 2002/11/2/pubmed PY - 2003/4/15/medline PY - 2002/11/2/entrez SP - 3567 EP - 73 JF - Electrophoresis JO - Electrophoresis VL - 23 IS - 20 N2 - The channels of microfluidic glass chips have been coated with poly(vinyl alcohol) (PVA). Applied for microchip electrophoresis, the coated devices exhibited a suppressed electroosmotic flow and improved separation performance. The superior performance of PVA-coated channels could be demonstrated by electrophoretic separations of labeled amines and by video microscopy. While a distorted sample zone is injected using uncoated channels the application of PVA-coated channels results in an improved shape of the sample zone with less band broadening. Applying PVA-coated microchips for the separation of amines labeled with Alexa Fluor 350 even sub-second separations, utilizing a separation length of only 650 microm, could be obtained, while this was not possible using uncoated devices. By using PVA-coated devices rather than an uncoated chip a threefold increase in separation efficiencies could be observed. As the electroosmotic flow (EOF) was suppressed, the anionic compounds were detected at the anode whereas the dominant EOF in uncoated devices resulted in an effective mobility to the cathode. Besides improved separation performance another important feature of the PVA-coated channels was the suppressed adsorption of fluorescent compounds in repetitive runs which results in an improved robustness and detection sensitivity. Applying PVA-coated channels, rinsing or etching steps could be omitted while this was necessary for a reliable operation of uncoated devices. SN - 0173-0835 UR - https://www.unboundmedicine.com/medline/citation/12412126/Poly_vinyl_alcohol__coated_microfluidic_devices_for_high_performance_microchip_electrophoresis_ DB - PRIME DP - Unbound Medicine ER -