Tags

Type your tag names separated by a space and hit enter

Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine.
Water Res. 2003 Apr; 37(7):1469-87.WR

Abstract

Ozone is an excellent disinfectant and can even be used to inactivate microorganisms such as protozoa which are very resistant to conventional disinfectants. Proper rate constants for the inactivation of microorganisms are only available for six species (E. coli, Bacillus subtilis spores, Rotavirus, Giardia lamblia cysts, Giardia muris cysts, Cryptosporidium parvum oocysts). The apparent activation energy for the inactivation of bacteria is in the same order as most chemical reactions (35-50 kJ mol(-1)), whereas it is much higher for the inactivation of protozoa (80 kJ mol(-1)). This requires significantly higher ozone exposures at low temperatures to get a similar inactivation for protozoa. Even for the inactivation of resistant microorganisms, OH radicals only play a minor role. Numerous organic and inorganic ozonation disinfection/oxidation by-products have been identified. The by-product of main concern is bromate, which is formed in bromide-containing waters. A low drinking water standard of 10 microg l(-1) has been set for bromate. Therefore, disinfection and oxidation processes have to be evaluated to fulfil these criteria. In certain cases, when bromide concentrations are above about 50 microg l(-1), it may be necessary to use control measures to lower bromate formation (lowering of pH, ammonia addition). Iodate is the main by-product formed during ozonation of iodide-containing waters. The reactions involved are direct ozone oxidations. Iodate is considered non-problematic because it is transformed back to iodide endogenically. Chloride cannot be oxidized during ozonation processes under drinking water conditions. Chlorate is only formed if a preoxidation by chlorine and/or chlorine dioxide has occurred.

Authors+Show Affiliations

Swiss Federal Institute for Environmental Science and Technology, EAWAG, Ueberlandstr 133, CH-8600 Dübendorf, Switzerland. vongunten@eawag.ch

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Review

Language

eng

PubMed ID

12600375

Citation

von Gunten, Urs. "Ozonation of Drinking Water: Part II. Disinfection and By-product Formation in Presence of Bromide, Iodide or Chlorine." Water Research, vol. 37, no. 7, 2003, pp. 1469-87.
von Gunten U. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003;37(7):1469-87.
von Gunten, U. (2003). Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research, 37(7), 1469-87.
von Gunten U. Ozonation of Drinking Water: Part II. Disinfection and By-product Formation in Presence of Bromide, Iodide or Chlorine. Water Res. 2003;37(7):1469-87. PubMed PMID: 12600375.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. A1 - von Gunten,Urs, PY - 2003/2/26/pubmed PY - 2003/6/19/medline PY - 2003/2/26/entrez SP - 1469 EP - 87 JF - Water research JO - Water Res VL - 37 IS - 7 N2 - Ozone is an excellent disinfectant and can even be used to inactivate microorganisms such as protozoa which are very resistant to conventional disinfectants. Proper rate constants for the inactivation of microorganisms are only available for six species (E. coli, Bacillus subtilis spores, Rotavirus, Giardia lamblia cysts, Giardia muris cysts, Cryptosporidium parvum oocysts). The apparent activation energy for the inactivation of bacteria is in the same order as most chemical reactions (35-50 kJ mol(-1)), whereas it is much higher for the inactivation of protozoa (80 kJ mol(-1)). This requires significantly higher ozone exposures at low temperatures to get a similar inactivation for protozoa. Even for the inactivation of resistant microorganisms, OH radicals only play a minor role. Numerous organic and inorganic ozonation disinfection/oxidation by-products have been identified. The by-product of main concern is bromate, which is formed in bromide-containing waters. A low drinking water standard of 10 microg l(-1) has been set for bromate. Therefore, disinfection and oxidation processes have to be evaluated to fulfil these criteria. In certain cases, when bromide concentrations are above about 50 microg l(-1), it may be necessary to use control measures to lower bromate formation (lowering of pH, ammonia addition). Iodate is the main by-product formed during ozonation of iodide-containing waters. The reactions involved are direct ozone oxidations. Iodate is considered non-problematic because it is transformed back to iodide endogenically. Chloride cannot be oxidized during ozonation processes under drinking water conditions. Chlorate is only formed if a preoxidation by chlorine and/or chlorine dioxide has occurred. SN - 0043-1354 UR - https://www.unboundmedicine.com/medline/citation/12600375/Ozonation_of_drinking_water:_part_II__Disinfection_and_by_product_formation_in_presence_of_bromide_iodide_or_chlorine_ DB - PRIME DP - Unbound Medicine ER -