Tags

Type your tag names separated by a space and hit enter

Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review.

Abstract

Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation and 3-nitrotyrosine formation, among other indices, is observed in Alzheimer's disease (AD) brain. Amyloid beta-peptide (1-42) [Abeta(1-42)] may be central to the pathogenesis of AD. Our laboratory and others have implicated Abeta(1-42)-induced free radical oxidative stress in the neurodegeneration observed in AD brain. This paper reviews some of these studies from our laboratory. Recently, we showed both in-vitro and in-vivo that methionine residue 35 (Met-35) of Abeta(1-42) was critical to its oxidative stress and neurotoxic properties. Because the C-terminal region of Abeta(1-42) is helical, and invoking the i + 4 rule of helices, we hypothesized that the carboxyl oxygen of lle-31, known to be within a van der Waals distance of the S atom of Met-35, would interact with the latter. This interaction could alter the susceptibility for oxidation of Met-35, i.e. free radical formation. Consistent with this hypothesis, substitution of lle-31 by the helix-breaking amino acid, proline, completely abrogated the oxidative stress and neurotoxic properties of Abeta(1-42). Removal of the Met-35 residue from the lipid bilayer by substitution of the negatively charged Asp for Gly-37 abrogated oxidative stress and neurotoxic properties of Abeta(1-42). The free radical scavenger vitamin E prevented A(beta (1-42)-induced ROS formation, protein oxidation, lipid peroxidation, and neurotoxicity in hippocampal neurons, consistent with our model for Abeta-associated free radical oxidative stress induced neurodegeneration in AD. ApoE, allele 4, is a risk factor for AD. Synaptosomes from apoE knock-out mice are more vulnerable to Abeta-induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. We also studied synaptosomes from allele-specific human apoE knock-in mice. Brain membranes from human apoE4 mice have greater vulnerability to Abeta(1-42)-induced oxidative stress than brain membranes from apoE2 or E3, assessed by the same indices, consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Using immunoprecipitation of proteins from AD and control brain obtained no longer than 4h PMI, selective oxidized proteins were identified in the AD brain. Creatine kinase (CK) and beta-actin have increased carbonyl groups, an index of protein oxidation, and Glt-1, the principal glutamate transporter, has increased binding of the lipid peroxidation product, 4-hydroxy-2-nonenal (HNE). Abeta inhibits CK and causes lipid peroxidation, leading to HNE formation. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. Other oxidatively modified proteins have been identified in AD brain by proteomics analysis, and these oxidatively-modified proteins may be related to increased excitotoxicity (glutamine synthetase), aberrant proteasomal degradation of damaged or aggregated proteins (ubiquitin C-terminal hydrolase L-1), altered energy production (alpha-enolase), and diminished growth cone elongation and directionality (dihydropyrimindase-related protein 2). Taken together, these studies outlined above suggest that Met-35 is key to the oxidative stress and neurotoxic properties of Abeta(1-42) and may help explain the apoE allele dependence on risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of Abeta(1-42)-induced oxidative stress and neurodegeneration in AD.

Authors+Show Affiliations

Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA. dabcns@uky.edu

Source

Free radical research 36:12 2002 Dec pg 1307-13

MeSH

Alzheimer Disease
Amino Acid Sequence
Amyloid beta-Peptides
Animals
Brain
Free Radical Scavengers
Humans
Lipid Bilayers
Methionine
Molecular Sequence Data
Neurons
Oxidative Stress
Peptide Fragments
Peptides
Protein Structure, Tertiary
Reactive Oxygen Species

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, P.H.S.
Review

Language

eng

PubMed ID

12607822

Citation

Butterfield, D Allan. "Amyloid Beta-peptide (1-42)-induced Oxidative Stress and Neurotoxicity: Implications for Neurodegeneration in Alzheimer's Disease Brain. a Review." Free Radical Research, vol. 36, no. 12, 2002, pp. 1307-13.
Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review. Free Radic Res. 2002;36(12):1307-13.
Butterfield, D. A. (2002). Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review. Free Radical Research, 36(12), pp. 1307-13.
Butterfield DA. Amyloid Beta-peptide (1-42)-induced Oxidative Stress and Neurotoxicity: Implications for Neurodegeneration in Alzheimer's Disease Brain. a Review. Free Radic Res. 2002;36(12):1307-13. PubMed PMID: 12607822.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review. A1 - Butterfield,D Allan, PY - 2003/2/28/pubmed PY - 2003/6/19/medline PY - 2003/2/28/entrez SP - 1307 EP - 13 JF - Free radical research JO - Free Radic. Res. VL - 36 IS - 12 N2 - Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation and 3-nitrotyrosine formation, among other indices, is observed in Alzheimer's disease (AD) brain. Amyloid beta-peptide (1-42) [Abeta(1-42)] may be central to the pathogenesis of AD. Our laboratory and others have implicated Abeta(1-42)-induced free radical oxidative stress in the neurodegeneration observed in AD brain. This paper reviews some of these studies from our laboratory. Recently, we showed both in-vitro and in-vivo that methionine residue 35 (Met-35) of Abeta(1-42) was critical to its oxidative stress and neurotoxic properties. Because the C-terminal region of Abeta(1-42) is helical, and invoking the i + 4 rule of helices, we hypothesized that the carboxyl oxygen of lle-31, known to be within a van der Waals distance of the S atom of Met-35, would interact with the latter. This interaction could alter the susceptibility for oxidation of Met-35, i.e. free radical formation. Consistent with this hypothesis, substitution of lle-31 by the helix-breaking amino acid, proline, completely abrogated the oxidative stress and neurotoxic properties of Abeta(1-42). Removal of the Met-35 residue from the lipid bilayer by substitution of the negatively charged Asp for Gly-37 abrogated oxidative stress and neurotoxic properties of Abeta(1-42). The free radical scavenger vitamin E prevented A(beta (1-42)-induced ROS formation, protein oxidation, lipid peroxidation, and neurotoxicity in hippocampal neurons, consistent with our model for Abeta-associated free radical oxidative stress induced neurodegeneration in AD. ApoE, allele 4, is a risk factor for AD. Synaptosomes from apoE knock-out mice are more vulnerable to Abeta-induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. We also studied synaptosomes from allele-specific human apoE knock-in mice. Brain membranes from human apoE4 mice have greater vulnerability to Abeta(1-42)-induced oxidative stress than brain membranes from apoE2 or E3, assessed by the same indices, consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Using immunoprecipitation of proteins from AD and control brain obtained no longer than 4h PMI, selective oxidized proteins were identified in the AD brain. Creatine kinase (CK) and beta-actin have increased carbonyl groups, an index of protein oxidation, and Glt-1, the principal glutamate transporter, has increased binding of the lipid peroxidation product, 4-hydroxy-2-nonenal (HNE). Abeta inhibits CK and causes lipid peroxidation, leading to HNE formation. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. Other oxidatively modified proteins have been identified in AD brain by proteomics analysis, and these oxidatively-modified proteins may be related to increased excitotoxicity (glutamine synthetase), aberrant proteasomal degradation of damaged or aggregated proteins (ubiquitin C-terminal hydrolase L-1), altered energy production (alpha-enolase), and diminished growth cone elongation and directionality (dihydropyrimindase-related protein 2). Taken together, these studies outlined above suggest that Met-35 is key to the oxidative stress and neurotoxic properties of Abeta(1-42) and may help explain the apoE allele dependence on risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of Abeta(1-42)-induced oxidative stress and neurodegeneration in AD. SN - 1071-5762 UR - https://www.unboundmedicine.com/medline/citation/12607822/Amyloid_beta_peptide__1_42__induced_oxidative_stress_and_neurotoxicity:_implications_for_neurodegeneration_in_Alzheimer's_disease_brain__A_review_ L2 - https://medlineplus.gov/alzheimersdisease.html DB - PRIME DP - Unbound Medicine ER -