Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forces--a three-dimensional FEM study.Angle Orthod. 2003 Feb; 73(1):12-20.AO
The purpose of this study was to analyze the stress distribution patterns within the craniofacial complex during rapid maxillary expansion. Therefore, a finite element model of a young human skull was generated using data from computerized tomographic scans of a dried skull. The model was then strained to a state of maxillary expansion simulating the clinical situation. The three-dimensional pattern of displacement and stress distribution was then analyzed. Maximum lateral displacement was 5.313 mm at the region of upper central incisors. The inferior parts of the pterygoid plates were also markedly displaced laterally. But there was minimum displacement of the pterygoid plates approximating the cranial base. Maximum forward displacement was 1.077 mm and was seen at the region of the anteroinferior border of the nasal septum. In the vertical plane, the midline structures experienced a downward displacement. Even the ANS and point A moved downward. The findings of this study provide some additional explanation of the concept of correlation between the areas of increased cellular activity and the areas of dissipation of heavy orthopedic forces. Therefore, the reason for the occurrence of sensation of pressure at various craniofacial regions, reported by the patients undergoing maxillary expansion could be correlated to areas of high concentration of stresses as seen in this study. Additionally, the expansive forces are not restricted to the intermaxillary suture alone but are also distributed to the sphenoid and zygomatic bones and other associated structures.