Tags

Type your tag names separated by a space and hit enter

Evidence for cannabinoid receptor-dependent and -independent mechanisms of action in leukocytes.
J Pharmacol Exp Ther. 2003 Sep; 306(3):1077-85.JP

Abstract

Cannabinoids exhibit immunosuppressive actions that include inhibition of interleukin-2 production in response to a variety of T cell activation stimuli. Traditionally, the effects of these compounds have been attributed to cannabinoid receptors CB1 and CB2, both of which are expressed in mouse splenocytes. Therefore, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorphenyl)-4-methyl-H-pyrazole-3 carboxyamidehydrochloride (SR141716A), a CB1 antagonist, and N-[(1S)-endo-1,3,3,-trimethyl-bicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), a CB2 antagonist, were used to investigate the role of cannabinoid receptors in the cannabinoid-induced inhibition of phorbol ester plus calcium ionophore (PMA/Io)-stimulated interleukin-2 production by mouse splenocytes. PMA/Io-stimulated interleukin-2 production was inhibited by cannabinol, cannabidiol, and both WIN 55212-2 stereoisomers with a rank order potency of R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-napthanlenyl) methanone mesylate (WIN 55212-2) approximately cannabidiol > S-(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-napthanlenyl) methanone mesylate (WIN 55212-3) approximately cannabinol. Cannabinoid-induced inhibition of PMA/Io-stimulated interleukin-2 was not attenuated by the presence of both SR144528 and SR141716A. Using pertussis toxin to address the role of G protein-coupled receptors in this response, it was determined that pertussis toxin treatment did not attenuate cannabinol-induced inhibition of PMA/Io-stimulated interleukin-2. With the demonstration that cannabinoid-induced inhibition of PMA/Io-stimulated interleukin-2 was not mediated via CB1 or CB2, alternative targets of cannabinoids in T cells were examined. Specifically, it was demonstrated that cannabinoids elevated intracellular calcium concentration in resting splenocytes and that the cannabinol-induced elevation in intracellular calcium concentration was attenuated by treatment with both SR144528 and SR141716A. Interestingly, pretreatment of splenocytes with agents that elevate intracellular calcium concentration inhibited PMA/Io-stimulated interleukin-2 production, suggesting that an elevation in intracellular calcium concentration might be involved in the mechanism of interleukin-2 inhibition. These studies suggest that immune modulation produced by cannabinoids involves multiple mechanisms, which might be both cannabinoid receptor-dependent and -independent.

Authors+Show Affiliations

Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

12805480

Citation

Kaplan, Barbara L Faubert, et al. "Evidence for Cannabinoid Receptor-dependent and -independent Mechanisms of Action in Leukocytes." The Journal of Pharmacology and Experimental Therapeutics, vol. 306, no. 3, 2003, pp. 1077-85.
Kaplan BL, Rockwell CE, Kaminski NE. Evidence for cannabinoid receptor-dependent and -independent mechanisms of action in leukocytes. J Pharmacol Exp Ther. 2003;306(3):1077-85.
Kaplan, B. L., Rockwell, C. E., & Kaminski, N. E. (2003). Evidence for cannabinoid receptor-dependent and -independent mechanisms of action in leukocytes. The Journal of Pharmacology and Experimental Therapeutics, 306(3), 1077-85.
Kaplan BL, Rockwell CE, Kaminski NE. Evidence for Cannabinoid Receptor-dependent and -independent Mechanisms of Action in Leukocytes. J Pharmacol Exp Ther. 2003;306(3):1077-85. PubMed PMID: 12805480.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Evidence for cannabinoid receptor-dependent and -independent mechanisms of action in leukocytes. AU - Kaplan,Barbara L Faubert, AU - Rockwell,Cheryl E, AU - Kaminski,Norbert E, Y1 - 2003/06/12/ PY - 2003/6/14/pubmed PY - 2003/10/4/medline PY - 2003/6/14/entrez SP - 1077 EP - 85 JF - The Journal of pharmacology and experimental therapeutics JO - J Pharmacol Exp Ther VL - 306 IS - 3 N2 - Cannabinoids exhibit immunosuppressive actions that include inhibition of interleukin-2 production in response to a variety of T cell activation stimuli. Traditionally, the effects of these compounds have been attributed to cannabinoid receptors CB1 and CB2, both of which are expressed in mouse splenocytes. Therefore, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorphenyl)-4-methyl-H-pyrazole-3 carboxyamidehydrochloride (SR141716A), a CB1 antagonist, and N-[(1S)-endo-1,3,3,-trimethyl-bicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), a CB2 antagonist, were used to investigate the role of cannabinoid receptors in the cannabinoid-induced inhibition of phorbol ester plus calcium ionophore (PMA/Io)-stimulated interleukin-2 production by mouse splenocytes. PMA/Io-stimulated interleukin-2 production was inhibited by cannabinol, cannabidiol, and both WIN 55212-2 stereoisomers with a rank order potency of R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-napthanlenyl) methanone mesylate (WIN 55212-2) approximately cannabidiol > S-(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-napthanlenyl) methanone mesylate (WIN 55212-3) approximately cannabinol. Cannabinoid-induced inhibition of PMA/Io-stimulated interleukin-2 was not attenuated by the presence of both SR144528 and SR141716A. Using pertussis toxin to address the role of G protein-coupled receptors in this response, it was determined that pertussis toxin treatment did not attenuate cannabinol-induced inhibition of PMA/Io-stimulated interleukin-2. With the demonstration that cannabinoid-induced inhibition of PMA/Io-stimulated interleukin-2 was not mediated via CB1 or CB2, alternative targets of cannabinoids in T cells were examined. Specifically, it was demonstrated that cannabinoids elevated intracellular calcium concentration in resting splenocytes and that the cannabinol-induced elevation in intracellular calcium concentration was attenuated by treatment with both SR144528 and SR141716A. Interestingly, pretreatment of splenocytes with agents that elevate intracellular calcium concentration inhibited PMA/Io-stimulated interleukin-2 production, suggesting that an elevation in intracellular calcium concentration might be involved in the mechanism of interleukin-2 inhibition. These studies suggest that immune modulation produced by cannabinoids involves multiple mechanisms, which might be both cannabinoid receptor-dependent and -independent. SN - 0022-3565 UR - https://www.unboundmedicine.com/medline/citation/12805480/Evidence_for_cannabinoid_receptor_dependent_and__independent_mechanisms_of_action_in_leukocytes_ L2 - https://jpet.aspetjournals.org/cgi/pmidlookup?view=long&pmid=12805480 DB - PRIME DP - Unbound Medicine ER -