Tags

Type your tag names separated by a space and hit enter

Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways.
Oncogene. 2003 Jul 10; 22(28):4314-32.O

Abstract

Transforming growth factor (TGF)-beta1 acts as a potent growth inhibitor of prostate epithelial cells, and aberrant function of its receptor type I and II correlates with tumor aggressiveness. However, intracellular and serum TGF-beta1 levels are elevated in prostate cancer patients and further increased in patients with metastatic carcinoma, suggesting the oncogenic switch of TGF-beta1 role in prostate tumorigenesis. Recently, we reported the mitogenic conversion of TGF-beta1 effect by oncogenic Ha-Ras in prostate cancer cells. Here, we show that TGF-beta1 activates interleukin (IL)-6, which has been implicated in the malignant progression of prostate cancers, via multiple signaling pathways including Smad2, nuclear factor-kappaB (NF-kappaB), JNK, and Ras. TGF-beta1-induced IL-6 gene expression was strongly inhibited by DN-Smad2 but not by DN-Smad3 while it was further activated by wild-type Smad2 transfection. IL-6 activation by TGF-beta1 was accompanied by nuclear translocation of NF-kappaB, which was blocked by the p38 inhibitors SB202190 and SB203580 or by IkappaBalphaDeltaN transfection, indicating the crucial role for the p38-NF-kappaB signaling in TGF-beta1 induction of IL-6. TGF-beta1 activated c-Jun phosphorylation, and IL-6 induction by TGF-beta1 was severely impeded by DN-c-Jun and DN-JNK or AP-1 inhibitor curcumin, showing that the JNK-c-Jun-AP-1 signaling plays a pivotal role in TGF-beta1 stimulation of IL-6. It was also found that the Ras-Raf-MEK1 cascade is activated by TGF-beta1 and participates in the TGF-beta1 induction of IL-6 in an AP-1-dependent manner. Cotransfection assays demonstrated that TGF-beta1 stimulation of IL-6 results from the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK-c-Jun-AP-1, or Ras-Raf-MEK1 cascades. In addition, a time course IL-6 decay revealed that mRNA stability of IL-6 is modestly increased by TGF-beta1, indicating that TGF-beta1 also regulates IL-6 at the post-transcriptional level. Intriguingly, IL-6 inactivation restored the sensitivity to TGF-beta1-mediated growth arrest and apoptosis, suggesting that elevated IL-6 in advanced prostate tumors might act as a resistance factor against TGF-beta1. Collectively, our data demonstrate that IL-6 expression is stimulated by tumor-producing TGF-beta1 in human prostate cancer cells through multiple signaling pathways including Smad2, p38, JNK, and Ras, and enhanced expression of IL-6 could contribute to the oncogenic switch of TGF-beta1 role for prostate tumorigenesis, in part by counteracting its growth suppression function.

Authors+Show Affiliations

Department of Pathology, College of Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

12853969

Citation

Park, Jae-Il, et al. "Transforming Growth Factor-beta1 Activates Interleukin-6 Expression in Prostate Cancer Cells Through the Synergistic Collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras Signaling Pathways." Oncogene, vol. 22, no. 28, 2003, pp. 4314-32.
Park JI, Lee MG, Cho K, et al. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene. 2003;22(28):4314-32.
Park, J. I., Lee, M. G., Cho, K., Park, B. J., Chae, K. S., Byun, D. S., Ryu, B. K., Park, Y. K., & Chi, S. G. (2003). Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene, 22(28), 4314-32.
Park JI, et al. Transforming Growth Factor-beta1 Activates Interleukin-6 Expression in Prostate Cancer Cells Through the Synergistic Collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras Signaling Pathways. Oncogene. 2003 Jul 10;22(28):4314-32. PubMed PMID: 12853969.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. AU - Park,Jae-Il, AU - Lee,Min-Goo, AU - Cho,Kyucheol, AU - Park,Bum-Joon, AU - Chae,Kwon-Seok, AU - Byun,Do-Sun, AU - Ryu,Byung-Kyu, AU - Park,Yong-Keun, AU - Chi,Sung-Gil, PY - 2003/7/11/pubmed PY - 2003/8/2/medline PY - 2003/7/11/entrez SP - 4314 EP - 32 JF - Oncogene JO - Oncogene VL - 22 IS - 28 N2 - Transforming growth factor (TGF)-beta1 acts as a potent growth inhibitor of prostate epithelial cells, and aberrant function of its receptor type I and II correlates with tumor aggressiveness. However, intracellular and serum TGF-beta1 levels are elevated in prostate cancer patients and further increased in patients with metastatic carcinoma, suggesting the oncogenic switch of TGF-beta1 role in prostate tumorigenesis. Recently, we reported the mitogenic conversion of TGF-beta1 effect by oncogenic Ha-Ras in prostate cancer cells. Here, we show that TGF-beta1 activates interleukin (IL)-6, which has been implicated in the malignant progression of prostate cancers, via multiple signaling pathways including Smad2, nuclear factor-kappaB (NF-kappaB), JNK, and Ras. TGF-beta1-induced IL-6 gene expression was strongly inhibited by DN-Smad2 but not by DN-Smad3 while it was further activated by wild-type Smad2 transfection. IL-6 activation by TGF-beta1 was accompanied by nuclear translocation of NF-kappaB, which was blocked by the p38 inhibitors SB202190 and SB203580 or by IkappaBalphaDeltaN transfection, indicating the crucial role for the p38-NF-kappaB signaling in TGF-beta1 induction of IL-6. TGF-beta1 activated c-Jun phosphorylation, and IL-6 induction by TGF-beta1 was severely impeded by DN-c-Jun and DN-JNK or AP-1 inhibitor curcumin, showing that the JNK-c-Jun-AP-1 signaling plays a pivotal role in TGF-beta1 stimulation of IL-6. It was also found that the Ras-Raf-MEK1 cascade is activated by TGF-beta1 and participates in the TGF-beta1 induction of IL-6 in an AP-1-dependent manner. Cotransfection assays demonstrated that TGF-beta1 stimulation of IL-6 results from the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK-c-Jun-AP-1, or Ras-Raf-MEK1 cascades. In addition, a time course IL-6 decay revealed that mRNA stability of IL-6 is modestly increased by TGF-beta1, indicating that TGF-beta1 also regulates IL-6 at the post-transcriptional level. Intriguingly, IL-6 inactivation restored the sensitivity to TGF-beta1-mediated growth arrest and apoptosis, suggesting that elevated IL-6 in advanced prostate tumors might act as a resistance factor against TGF-beta1. Collectively, our data demonstrate that IL-6 expression is stimulated by tumor-producing TGF-beta1 in human prostate cancer cells through multiple signaling pathways including Smad2, p38, JNK, and Ras, and enhanced expression of IL-6 could contribute to the oncogenic switch of TGF-beta1 role for prostate tumorigenesis, in part by counteracting its growth suppression function. SN - 0950-9232 UR - https://www.unboundmedicine.com/medline/citation/12853969/Transforming_growth_factor_beta1_activates_interleukin_6_expression_in_prostate_cancer_cells_through_the_synergistic_collaboration_of_the_Smad2_p38_NF_kappaB_JNK_and_Ras_signaling_pathways_ L2 - https://doi.org/10.1038/sj.onc.1206478 DB - PRIME DP - Unbound Medicine ER -