Tags

Type your tag names separated by a space and hit enter

Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens.
Chemosphere. 2004 Jun; 55(9):1179-87.C

Abstract

Phytoremediation is a promising approach for cleaning up soils contaminated with heavy metals. Information is needed to understand growth response and uptake mechanisms of heavy metals by some plant species with exceptional capability in absorbing and superaccumulating metals from soils. Greenhouse study, field trial, and old mined area survey were conducted to evaluate growth response and Cu phytoextraction of Elsholtzia splendens in contaminated soils, which has been recently identified to be tolerant to high Cu concentration and have great potential in remediating contaminated soils. The results from this study indicate that the plant exhibited high tolerance to Cu toxicity in the soils, and normal growth was attained up to 80 mg kg(-1) available soil Cu (the NH4OAc extractable Cu) or 1000 mg kg(-1) total Cu. Under the field conditions, a biomass yield of 9 ton ha(-1) was recorded at the soil available Cu level of 77 mg kg(-1), as estimated by the NH4OAc extraction method. Concentration-dependent uptake of Cu by the plant occurred mainly at the early growth stage, and at the late stage, there is no difference in shoot Cu concentrations grown at different extractable soil Cu levels. The extractability of Cu from the highly polluted soil is much greater by the roots than that by the shoots. The NH4OAc extractable Cu level in the polluted soil was reduced from 78 to 55 mg kg(-1) in the soil after phytoextraction and removal of Cu by the plant species for one growth season. The depletion of extractable Cu level in the rhizosphere was noted grown in the mined area, even at high Cu levels, the NH4OAc extractable Cu in the rhizosphere was 30% lower than that in the bulk soil. These results indicate that phytoextraction of E. splendens can effectively reduce the plant-available Cu level in the polluted soils.

Authors+Show Affiliations

Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, Department of Natural Resource Science, College of Natural Resource and Environmental Science, Zhejiang University, Huajiachi Campus, Hangzhou 310029, China.No affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

15081758

Citation

Jiang, L Y., et al. "Growth Response and Phytoextraction of Copper at Different Levels in Soils By Elsholtzia Splendens." Chemosphere, vol. 55, no. 9, 2004, pp. 1179-87.
Jiang LY, Yang XE, He ZL. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere. 2004;55(9):1179-87.
Jiang, L. Y., Yang, X. E., & He, Z. L. (2004). Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere, 55(9), 1179-87.
Jiang LY, Yang XE, He ZL. Growth Response and Phytoextraction of Copper at Different Levels in Soils By Elsholtzia Splendens. Chemosphere. 2004;55(9):1179-87. PubMed PMID: 15081758.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. AU - Jiang,L Y, AU - Yang,X E, AU - He,Z L, PY - 2003/07/16/received PY - 2004/01/23/revised PY - 2004/01/23/accepted PY - 2004/4/15/pubmed PY - 2004/6/30/medline PY - 2004/4/15/entrez SP - 1179 EP - 87 JF - Chemosphere JO - Chemosphere VL - 55 IS - 9 N2 - Phytoremediation is a promising approach for cleaning up soils contaminated with heavy metals. Information is needed to understand growth response and uptake mechanisms of heavy metals by some plant species with exceptional capability in absorbing and superaccumulating metals from soils. Greenhouse study, field trial, and old mined area survey were conducted to evaluate growth response and Cu phytoextraction of Elsholtzia splendens in contaminated soils, which has been recently identified to be tolerant to high Cu concentration and have great potential in remediating contaminated soils. The results from this study indicate that the plant exhibited high tolerance to Cu toxicity in the soils, and normal growth was attained up to 80 mg kg(-1) available soil Cu (the NH4OAc extractable Cu) or 1000 mg kg(-1) total Cu. Under the field conditions, a biomass yield of 9 ton ha(-1) was recorded at the soil available Cu level of 77 mg kg(-1), as estimated by the NH4OAc extraction method. Concentration-dependent uptake of Cu by the plant occurred mainly at the early growth stage, and at the late stage, there is no difference in shoot Cu concentrations grown at different extractable soil Cu levels. The extractability of Cu from the highly polluted soil is much greater by the roots than that by the shoots. The NH4OAc extractable Cu level in the polluted soil was reduced from 78 to 55 mg kg(-1) in the soil after phytoextraction and removal of Cu by the plant species for one growth season. The depletion of extractable Cu level in the rhizosphere was noted grown in the mined area, even at high Cu levels, the NH4OAc extractable Cu in the rhizosphere was 30% lower than that in the bulk soil. These results indicate that phytoextraction of E. splendens can effectively reduce the plant-available Cu level in the polluted soils. SN - 0045-6535 UR - https://www.unboundmedicine.com/medline/citation/15081758/Growth_response_and_phytoextraction_of_copper_at_different_levels_in_soils_by_Elsholtzia_splendens_ DB - PRIME DP - Unbound Medicine ER -