Tags

Type your tag names separated by a space and hit enter

CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases.
Neurosurgery. 2004 Jul; 55(1):89-98; discussion 98-9.N

Abstract

OBJECTIVE

The role of stereotactic radiosurgery for the treatment of intracranial lesions is well established. Its use for the treatment of spinal lesions has been limited by the availability of effective target-immobilizing devices. Conventional external beam radiotherapy lacks the precision to allow delivery of large doses of radiation near radiosensitive structures such as the spinal cord. The CyberKnife (Accuray, Inc., Sunnyvale, CA) is an image-guided frameless stereotactic radiosurgery system that allows for the radiosurgical treatment of spinal lesions. This study evaluated the feasibility and effectiveness of the treatment of spinal lesions with a single-fraction radiosurgical technique using the CyberKnife.

METHODS

The CyberKnife system uses the coupling of an orthogonal pair of x-ray cameras to a dynamically manipulated robot-mounted linear accelerator with six degrees of freedom that guides the therapy beam to the intended target without the use of frame-based fixation. Real-time imaging allows the tracking of patient movement. Cervical spine lesions were located and tracked relative to cranial bony landmarks; lower spinal lesions were tracked relative to fiducial bone markers. In this prospective cohort evaluation of a spine radiosurgery technique, 125 spinal lesions in 115 consecutive patients were treated with a single-fraction radiosurgery technique (45 cervical, 30 thoracic, 36 lumbar, and 14 sacral). There were 17 benign tumors and 108 metastatic lesions. All dose plans were calculated on the basis of computed tomographic images acquired from 1.25-mm slices with an inverse treatment planning technique. Radiosurgical circular cones ranging in diameter from 5 to 40 mm were used.

RESULTS

Tumor volume ranged from 0.3 to 232 cm(3) (mean, 27.8 cm(3)). Seventy-eight lesions had received external beam irradiation previously. Tumor dose was maintained at 12 to 20 Gy to the 80% isodose line (mean, 14 Gy); canal volume receiving more than 8 Gy ranged from 0.0 to 1.7 cm(3) (mean, 0.2 cm(3)). No acute radiation toxicity or new neurological deficits occurred during the follow-up period (range, 9-30 mo; median, 18 mo). Axial and radicular pain improved in 74 of 79 patients who were symptomatic before treatment.

CONCLUSION

This is the first large prospective evaluation of this frameless image-guided spinal radiosurgery system. The CyberKnife system was found to be feasible, safe, and effective. The major potential benefits of radiosurgical ablation of spinal lesions are short treatment time in an outpatient setting with rapid recovery and symptomatic response. This technique offers a successful therapeutic modality for the treatment of a variety of spinal lesions as a primary treatment or for lesions not amenable to open surgical techniques, in medically inoperable patients, in lesions located in previously irradiated sites, or as an adjunct to surgery.

Authors+Show Affiliations

Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Case Reports
Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

15214977

Citation

Gerszten, Peter C., et al. "CyberKnife Frameless Stereotactic Radiosurgery for Spinal Lesions: Clinical Experience in 125 Cases." Neurosurgery, vol. 55, no. 1, 2004, pp. 89-98; discussion 98-9.
Gerszten PC, Ozhasoglu C, Burton SA, et al. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery. 2004;55(1):89-98; discussion 98-9.
Gerszten, P. C., Ozhasoglu, C., Burton, S. A., Vogel, W. J., Atkins, B. A., Kalnicki, S., & Welch, W. C. (2004). CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery, 55(1), 89-98; discussion 98-9.
Gerszten PC, et al. CyberKnife Frameless Stereotactic Radiosurgery for Spinal Lesions: Clinical Experience in 125 Cases. Neurosurgery. 2004;55(1):89-98; discussion 98-9. PubMed PMID: 15214977.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. AU - Gerszten,Peter C, AU - Ozhasoglu,Cihat, AU - Burton,Steven A, AU - Vogel,William J, AU - Atkins,Barbara A, AU - Kalnicki,Shalom, AU - Welch,William C, PY - 2003/05/19/received PY - 2004/03/01/accepted PY - 2004/6/25/pubmed PY - 2004/9/3/medline PY - 2004/6/25/entrez SP - 89-98; discussion 98-9 JF - Neurosurgery JO - Neurosurgery VL - 55 IS - 1 N2 - OBJECTIVE: The role of stereotactic radiosurgery for the treatment of intracranial lesions is well established. Its use for the treatment of spinal lesions has been limited by the availability of effective target-immobilizing devices. Conventional external beam radiotherapy lacks the precision to allow delivery of large doses of radiation near radiosensitive structures such as the spinal cord. The CyberKnife (Accuray, Inc., Sunnyvale, CA) is an image-guided frameless stereotactic radiosurgery system that allows for the radiosurgical treatment of spinal lesions. This study evaluated the feasibility and effectiveness of the treatment of spinal lesions with a single-fraction radiosurgical technique using the CyberKnife. METHODS: The CyberKnife system uses the coupling of an orthogonal pair of x-ray cameras to a dynamically manipulated robot-mounted linear accelerator with six degrees of freedom that guides the therapy beam to the intended target without the use of frame-based fixation. Real-time imaging allows the tracking of patient movement. Cervical spine lesions were located and tracked relative to cranial bony landmarks; lower spinal lesions were tracked relative to fiducial bone markers. In this prospective cohort evaluation of a spine radiosurgery technique, 125 spinal lesions in 115 consecutive patients were treated with a single-fraction radiosurgery technique (45 cervical, 30 thoracic, 36 lumbar, and 14 sacral). There were 17 benign tumors and 108 metastatic lesions. All dose plans were calculated on the basis of computed tomographic images acquired from 1.25-mm slices with an inverse treatment planning technique. Radiosurgical circular cones ranging in diameter from 5 to 40 mm were used. RESULTS: Tumor volume ranged from 0.3 to 232 cm(3) (mean, 27.8 cm(3)). Seventy-eight lesions had received external beam irradiation previously. Tumor dose was maintained at 12 to 20 Gy to the 80% isodose line (mean, 14 Gy); canal volume receiving more than 8 Gy ranged from 0.0 to 1.7 cm(3) (mean, 0.2 cm(3)). No acute radiation toxicity or new neurological deficits occurred during the follow-up period (range, 9-30 mo; median, 18 mo). Axial and radicular pain improved in 74 of 79 patients who were symptomatic before treatment. CONCLUSION: This is the first large prospective evaluation of this frameless image-guided spinal radiosurgery system. The CyberKnife system was found to be feasible, safe, and effective. The major potential benefits of radiosurgical ablation of spinal lesions are short treatment time in an outpatient setting with rapid recovery and symptomatic response. This technique offers a successful therapeutic modality for the treatment of a variety of spinal lesions as a primary treatment or for lesions not amenable to open surgical techniques, in medically inoperable patients, in lesions located in previously irradiated sites, or as an adjunct to surgery. SN - 0148-396X UR - https://www.unboundmedicine.com/medline/citation/15214977/CyberKnife_frameless_stereotactic_radiosurgery_for_spinal_lesions:_clinical_experience_in_125_cases_ DB - PRIME DP - Unbound Medicine ER -