Tags

Type your tag names separated by a space and hit enter

Influence of salinity on the physiological conditions in mussels, Perna perna and Perna viridis (Bivalvia: Mytilidae).
Rev Biol Trop. 2003 Jun; 51 Suppl 4:153-8.RB

Abstract

Perna genus was introduced to Venezuela, but nowadays, Perna perna and Perna viridis coexist and are commercially exploited from their natural beds. The aim of this work was to determine the effect of salinity on the physiological conditions of these species by studying RNA/DNA and Protein/DNA ratios. The organisms were collected from natural beds at La Esmeralda, Sucre State, Venezuela, and acclimatized for 15 days under laboratory conditions at 25 degrees C, 36 per thousand salinity, pH between 7 and 8 and more than 90% of oxygen saturation. Later, they were divided in two groups: for one group, the salinity concentration was increased (36 to 45 per thousand), and for the other, the salinity was decreased (36 to 15 per thousand). The rate of change was 1 per thousand every day. Ten organisms per group of both species were taken at each of 15, 20, 25, 30, 36, 40 y 45 per thousand salinity concentrations. Protein (colorimetric method) and nucleic acids (RNA and DNA by fluorometric method) concentrations were measured in the digestive gland, gills and adductor muscle tissues. Results indicate that P. perna can physiologically compensate the increase in salinity, but not when the salinity decreased, when proteins are the most needed macromolecules. The Protein/DNA index is directly related to salinity changes in both cases. P. viridis shows physiological compensation to salinity increases and decreases. The RNA/DNA index value in both cases supports this. Digestive gland and muscle tissues are the regulating tissues in both species. These results show that P. viridis has a higher degree of adaptability to salinity changes and, therefore, a greater potential for aquaculture than P. perna.

Authors+Show Affiliations

Instituto Oceanográfico de Venezuela, Cumaná, Edo. Sucre, Venezuela. fbravo@raudo.udo.edu.ve

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

15264566

Citation

Segnini de Bravo, Mary Isabel. "Influence of Salinity On the Physiological Conditions in Mussels, Perna Perna and Perna Viridis (Bivalvia: Mytilidae)." Revista De Biologia Tropical, vol. 51 Suppl 4, 2003, pp. 153-8.
Segnini de Bravo MI. Influence of salinity on the physiological conditions in mussels, Perna perna and Perna viridis (Bivalvia: Mytilidae). Rev Biol Trop. 2003;51 Suppl 4:153-8.
Segnini de Bravo, M. I. (2003). Influence of salinity on the physiological conditions in mussels, Perna perna and Perna viridis (Bivalvia: Mytilidae). Revista De Biologia Tropical, 51 Suppl 4, 153-8.
Segnini de Bravo MI. Influence of Salinity On the Physiological Conditions in Mussels, Perna Perna and Perna Viridis (Bivalvia: Mytilidae). Rev Biol Trop. 2003;51 Suppl 4:153-8. PubMed PMID: 15264566.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Influence of salinity on the physiological conditions in mussels, Perna perna and Perna viridis (Bivalvia: Mytilidae). A1 - Segnini de Bravo,Mary Isabel, PY - 2004/7/22/pubmed PY - 2005/1/8/medline PY - 2004/7/22/entrez SP - 153 EP - 8 JF - Revista de biologia tropical JO - Rev. Biol. Trop. VL - 51 Suppl 4 N2 - Perna genus was introduced to Venezuela, but nowadays, Perna perna and Perna viridis coexist and are commercially exploited from their natural beds. The aim of this work was to determine the effect of salinity on the physiological conditions of these species by studying RNA/DNA and Protein/DNA ratios. The organisms were collected from natural beds at La Esmeralda, Sucre State, Venezuela, and acclimatized for 15 days under laboratory conditions at 25 degrees C, 36 per thousand salinity, pH between 7 and 8 and more than 90% of oxygen saturation. Later, they were divided in two groups: for one group, the salinity concentration was increased (36 to 45 per thousand), and for the other, the salinity was decreased (36 to 15 per thousand). The rate of change was 1 per thousand every day. Ten organisms per group of both species were taken at each of 15, 20, 25, 30, 36, 40 y 45 per thousand salinity concentrations. Protein (colorimetric method) and nucleic acids (RNA and DNA by fluorometric method) concentrations were measured in the digestive gland, gills and adductor muscle tissues. Results indicate that P. perna can physiologically compensate the increase in salinity, but not when the salinity decreased, when proteins are the most needed macromolecules. The Protein/DNA index is directly related to salinity changes in both cases. P. viridis shows physiological compensation to salinity increases and decreases. The RNA/DNA index value in both cases supports this. Digestive gland and muscle tissues are the regulating tissues in both species. These results show that P. viridis has a higher degree of adaptability to salinity changes and, therefore, a greater potential for aquaculture than P. perna. SN - 0034-7744 UR - https://www.unboundmedicine.com/medline/citation/15264566/Influence_of_salinity_on_the_physiological_conditions_in_mussels_Perna_perna_and_Perna_viridis__Bivalvia:_Mytilidae__ DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.