Tags

Type your tag names separated by a space and hit enter

Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors.
Plant J. 2004 Oct; 40(2):188-99.PJ

Abstract

Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.

Authors+Show Affiliations

Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-7, 08028 Barcelona, Spain.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

15447646

Citation

Botella-Pavía, Patricia, et al. "Regulation of Carotenoid Biosynthesis in Plants: Evidence for a Key Role of Hydroxymethylbutenyl Diphosphate Reductase in Controlling the Supply of Plastidial Isoprenoid Precursors." The Plant Journal : for Cell and Molecular Biology, vol. 40, no. 2, 2004, pp. 188-99.
Botella-Pavía P, Besumbes O, Phillips MA, et al. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J. 2004;40(2):188-99.
Botella-Pavía, P., Besumbes, O., Phillips, M. A., Carretero-Paulet, L., Boronat, A., & Rodríguez-Concepción, M. (2004). Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. The Plant Journal : for Cell and Molecular Biology, 40(2), 188-99.
Botella-Pavía P, et al. Regulation of Carotenoid Biosynthesis in Plants: Evidence for a Key Role of Hydroxymethylbutenyl Diphosphate Reductase in Controlling the Supply of Plastidial Isoprenoid Precursors. Plant J. 2004;40(2):188-99. PubMed PMID: 15447646.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. AU - Botella-Pavía,Patricia, AU - Besumbes,Oscar, AU - Phillips,Michael A, AU - Carretero-Paulet,Lorenzo, AU - Boronat,Albert, AU - Rodríguez-Concepción,Manuel, PY - 2004/9/28/pubmed PY - 2005/1/26/medline PY - 2004/9/28/entrez SP - 188 EP - 99 JF - The Plant journal : for cell and molecular biology JO - Plant J VL - 40 IS - 2 N2 - Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis. SN - 0960-7412 UR - https://www.unboundmedicine.com/medline/citation/15447646/Regulation_of_carotenoid_biosynthesis_in_plants:_evidence_for_a_key_role_of_hydroxymethylbutenyl_diphosphate_reductase_in_controlling_the_supply_of_plastidial_isoprenoid_precursors_ L2 - https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0960-7412&date=2004&volume=40&issue=2&spage=188 DB - PRIME DP - Unbound Medicine ER -