Tags

Type your tag names separated by a space and hit enter

Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer.
Exp Dermatol. 2004 Oct; 13(10):635-42.ED

Abstract

Minoxidil induces new hair growth in approximately one-third of patients with androgenetic alopecia after 1 year of treatment. With several conflicting reports in the literature based on small-scale studies, the current study aimed to clarify whether organ culture of human scalp anagen VI hair follicles is a suitable in vitro test system for reproducing, and experimentally dissecting, the recognized in vivo hair-growth-promoting capacity of minoxidil. Hair shaft elongation was studied in terminal anagen VI hair follicles microdissected from the occipital scalp of 36 healthy adults. A total of 2300 hair follicles, approximately 65 per individual, were tested using modifications of a basic organ culture protocol. It is shown here that minoxidil does not significantly increase hair shaft elongation or the duration of anagen VI in ex vivo culture despite several enhancements on the conventional methodology. This disparity to what is seen clinically in minoxidil responders may be explained by the following: (i) use of occipital (rather than frontotemporal or vertex) hair follicles; (ii) use of, already maximally growing, anagen VI hair follicles; (iii) a predominance of hair follicles from minoxidil unresponsive-donors; (iv) use of minoxidil rather than its sulfate metabolite; and/or (v) use of a suboptimal minoxidil dosage. This disparity questions the usefulness of standard human hair follicle organ culture in minoxidil research. Unexpectedly, minoxidil even inhibited hair shaft elongation in the absence of insulin, which may indicate that the actual hair-growth-modulatory effects of minoxidil depend on the concomitant local presence/absence of other growth modulators.

Authors+Show Affiliations

Department of Biomedical Sciences, University of Bradford, Bradford, UK.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

15447724

Citation

Magerl, Markus, et al. "Limitations of Human Occipital Scalp Hair Follicle Organ Culture for Studying the Effects of Minoxidil as a Hair Growth Enhancer." Experimental Dermatology, vol. 13, no. 10, 2004, pp. 635-42.
Magerl M, Paus R, Farjo N, et al. Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer. Exp Dermatol. 2004;13(10):635-42.
Magerl, M., Paus, R., Farjo, N., Müller-Röver, S., Peters, E. M., Foitzik, K., & Tobin, D. J. (2004). Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer. Experimental Dermatology, 13(10), 635-42.
Magerl M, et al. Limitations of Human Occipital Scalp Hair Follicle Organ Culture for Studying the Effects of Minoxidil as a Hair Growth Enhancer. Exp Dermatol. 2004;13(10):635-42. PubMed PMID: 15447724.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer. AU - Magerl,Markus, AU - Paus,Ralf, AU - Farjo,Nilofer, AU - Müller-Röver,Sven, AU - Peters,Eva M J, AU - Foitzik,Kerstin, AU - Tobin,Desmond J, PY - 2004/9/28/pubmed PY - 2005/4/6/medline PY - 2004/9/28/entrez SP - 635 EP - 42 JF - Experimental dermatology JO - Exp Dermatol VL - 13 IS - 10 N2 - Minoxidil induces new hair growth in approximately one-third of patients with androgenetic alopecia after 1 year of treatment. With several conflicting reports in the literature based on small-scale studies, the current study aimed to clarify whether organ culture of human scalp anagen VI hair follicles is a suitable in vitro test system for reproducing, and experimentally dissecting, the recognized in vivo hair-growth-promoting capacity of minoxidil. Hair shaft elongation was studied in terminal anagen VI hair follicles microdissected from the occipital scalp of 36 healthy adults. A total of 2300 hair follicles, approximately 65 per individual, were tested using modifications of a basic organ culture protocol. It is shown here that minoxidil does not significantly increase hair shaft elongation or the duration of anagen VI in ex vivo culture despite several enhancements on the conventional methodology. This disparity to what is seen clinically in minoxidil responders may be explained by the following: (i) use of occipital (rather than frontotemporal or vertex) hair follicles; (ii) use of, already maximally growing, anagen VI hair follicles; (iii) a predominance of hair follicles from minoxidil unresponsive-donors; (iv) use of minoxidil rather than its sulfate metabolite; and/or (v) use of a suboptimal minoxidil dosage. This disparity questions the usefulness of standard human hair follicle organ culture in minoxidil research. Unexpectedly, minoxidil even inhibited hair shaft elongation in the absence of insulin, which may indicate that the actual hair-growth-modulatory effects of minoxidil depend on the concomitant local presence/absence of other growth modulators. SN - 0906-6705 UR - https://www.unboundmedicine.com/medline/citation/15447724/Limitations_of_human_occipital_scalp_hair_follicle_organ_culture_for_studying_the_effects_of_minoxidil_as_a_hair_growth_enhancer_ L2 - https://doi.org/10.1111/j.0906-6705.2004.00207.x DB - PRIME DP - Unbound Medicine ER -