Tags

Type your tag names separated by a space and hit enter

Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
Environ Microbiol. 2004 Nov; 6(11):1159-73.EM

Abstract

Sites in the West Siberian peat bog 'Bakchar' were acidic (pH 4.2-4.8), low in nutrients, and emitted CH4 at rates of 0.2-1.5 mmol m(-2) h(-1). The vertical profile of delta13CH4 and delta13CO2 dissolved in the porewater indicated increasing isotope fractionation and thus increasing contribution of H2/CO2-dependent methanogenesis with depth. The anaerobic microbial community at 30-50 cm below the water table produced CH4 with optimum activity at 20-25 degrees C and pH 5.0-5.5 respectively. Inhibition of methanogenesis with 2-bromo-ethane sulphonate showed that acetate, phenyl acetate, phenyl propionate and caproate were important intermediates in the degradation pathway of organic matter to CH4. Further degradation of these intermediates indicated that 62-72% of the CH4 was ultimately derived from acetate, the remainder from H2/CO2. Turnover times of [2-14C]acetate were on the order of 2 days (15, 25 degrees C) and accounted for 60-65% of total CH4 production. Conversion of 14CO2 to 14CH4 accounted for 35-43% of total CH4 production. These results showed that acetoclastic and hydrogenotrophic methanogenesis operated closely at a ratio of approximately 2 : 1 irrespective of the incubation temperature (4, 15 and 25 degrees C). The composition of the archaeal community was determined in the peat samples by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of amplified SSU rRNA gene fragments, and showed that members of Methanomicrobiaceae, Methanosarcinaceae and Rice cluster II (RC-II) were present. Other, presumably non-methanogenic archaeal clusters (group III, RC-IV, RC-V, RC-VI) were also detected. Fluorescent in situ hybridization (FISH) showed that the number of Bacteria decreased (from 24 x 10(7) to 4 x 10(7) cells per gram peat) with depth (from 5 to 55 cm below the water table), whereas the numbers of Archaea slightly increased (from 1 x 10(7) to 2 x 10(7) cells per gram peat). Methanosarcina spp. accounted for about half of the archaeal cells. Our results show that both hydrogenotrophic and acetoclastic methanogenesis are an integral part of the CH4-producing pathway in acidic peat and were represented by appropriate methanogenic populations.

Authors+Show Affiliations

Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str, 35043 Marburg, Germany.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

15479249

Citation

Kotsyurbenko, Oleg R., et al. "Acetoclastic and Hydrogenotrophic Methane Production and Methanogenic Populations in an Acidic West-Siberian Peat Bog." Environmental Microbiology, vol. 6, no. 11, 2004, pp. 1159-73.
Kotsyurbenko OR, Chin KJ, Glagolev MV, et al. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol. 2004;6(11):1159-73.
Kotsyurbenko, O. R., Chin, K. J., Glagolev, M. V., Stubner, S., Simankova, M. V., Nozhevnikova, A. N., & Conrad, R. (2004). Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environmental Microbiology, 6(11), 1159-73.
Kotsyurbenko OR, et al. Acetoclastic and Hydrogenotrophic Methane Production and Methanogenic Populations in an Acidic West-Siberian Peat Bog. Environ Microbiol. 2004;6(11):1159-73. PubMed PMID: 15479249.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. AU - Kotsyurbenko,Oleg R, AU - Chin,Kuk-Jeong, AU - Glagolev,Mikhail V, AU - Stubner,Stephan, AU - Simankova,Maria V, AU - Nozhevnikova,Ala N, AU - Conrad,Ralf, PY - 2004/10/14/pubmed PY - 2005/1/26/medline PY - 2004/10/14/entrez SP - 1159 EP - 73 JF - Environmental microbiology JO - Environ Microbiol VL - 6 IS - 11 N2 - Sites in the West Siberian peat bog 'Bakchar' were acidic (pH 4.2-4.8), low in nutrients, and emitted CH4 at rates of 0.2-1.5 mmol m(-2) h(-1). The vertical profile of delta13CH4 and delta13CO2 dissolved in the porewater indicated increasing isotope fractionation and thus increasing contribution of H2/CO2-dependent methanogenesis with depth. The anaerobic microbial community at 30-50 cm below the water table produced CH4 with optimum activity at 20-25 degrees C and pH 5.0-5.5 respectively. Inhibition of methanogenesis with 2-bromo-ethane sulphonate showed that acetate, phenyl acetate, phenyl propionate and caproate were important intermediates in the degradation pathway of organic matter to CH4. Further degradation of these intermediates indicated that 62-72% of the CH4 was ultimately derived from acetate, the remainder from H2/CO2. Turnover times of [2-14C]acetate were on the order of 2 days (15, 25 degrees C) and accounted for 60-65% of total CH4 production. Conversion of 14CO2 to 14CH4 accounted for 35-43% of total CH4 production. These results showed that acetoclastic and hydrogenotrophic methanogenesis operated closely at a ratio of approximately 2 : 1 irrespective of the incubation temperature (4, 15 and 25 degrees C). The composition of the archaeal community was determined in the peat samples by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of amplified SSU rRNA gene fragments, and showed that members of Methanomicrobiaceae, Methanosarcinaceae and Rice cluster II (RC-II) were present. Other, presumably non-methanogenic archaeal clusters (group III, RC-IV, RC-V, RC-VI) were also detected. Fluorescent in situ hybridization (FISH) showed that the number of Bacteria decreased (from 24 x 10(7) to 4 x 10(7) cells per gram peat) with depth (from 5 to 55 cm below the water table), whereas the numbers of Archaea slightly increased (from 1 x 10(7) to 2 x 10(7) cells per gram peat). Methanosarcina spp. accounted for about half of the archaeal cells. Our results show that both hydrogenotrophic and acetoclastic methanogenesis are an integral part of the CH4-producing pathway in acidic peat and were represented by appropriate methanogenic populations. SN - 1462-2912 UR - https://www.unboundmedicine.com/medline/citation/15479249/Acetoclastic_and_hydrogenotrophic_methane_production_and_methanogenic_populations_in_an_acidic_West_Siberian_peat_bog_ DB - PRIME DP - Unbound Medicine ER -