Tags

Type your tag names separated by a space and hit enter

Photostability of sunscreen products influences the efficiency of protection with regard to UV-induced genotoxic or photoageing-related endpoints.
Br J Dermatol. 2004 Dec; 151(6):1234-44.BJ

Abstract

BACKGROUND

Acute as well as chronic sun exposure induces biologically damaging effects in skin including photoageing and cancer. Ultraviolet (UV)A radiation is involved in this process; it is therefore important that sunscreen products provide efficient and stable protection in this range of wavelengths.

OBJECTIVES

This study based on in vitro approaches was performed to demonstrate that photostability is an essential requirement to protect against UVA-induced genetic and dermal alterations.

METHODS

The protection afforded by two sunscreen products, differing with regard to their photostability, was studied using biological markers related to the genotoxic or photoageing impact of UVA or simulated solar UV radiation (UV-SSR). Comet assay was used to assess direct DNA breakage, photo-oxidized purines and lomefloxacin-induced DNA breaks in nuclei of normal human keratinocytes in culture. In similar conditions, detection of p53 accumulation was performed. The use of reconstructed skin in vitro allowed us to use a three-dimensional model to analyse the dermal and epidermal damage induced by UVA or UV-SSR exposure. Abnormal morphological features of the tissue as well as fibroblast alterations and matrix metalloproteinase-1 release induced by UV exposure have been studied after topical application of products on the skin surface.

RESULTS

The results showed that the photostable product afforded better protection with regard to all the criteria studied, compared with the photounstable product.

CONCLUSIONS

These data demonstrate that the loss of absorbing efficiency within the UVA wavelength domain due to photoinstability may have detrimental consequences on cell function and lead to impairments that have been implicated in genotoxic events as well as in the photoageing process.

Authors+Show Affiliations

Genotoxicity Group, L'OREAL Recherche, 1 Avenue E. Schueller, 93600 Aulnay sous Bois, France. lmarrot@recherche.loreal.comNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

15606520

Citation

Marrot, L, et al. "Photostability of Sunscreen Products Influences the Efficiency of Protection With Regard to UV-induced Genotoxic or Photoageing-related Endpoints." The British Journal of Dermatology, vol. 151, no. 6, 2004, pp. 1234-44.
Marrot L, Belaïdi JP, Lejeune F, et al. Photostability of sunscreen products influences the efficiency of protection with regard to UV-induced genotoxic or photoageing-related endpoints. Br J Dermatol. 2004;151(6):1234-44.
Marrot, L., Belaïdi, J. P., Lejeune, F., Meunier, J. R., Asselineau, D., & Bernerd, F. (2004). Photostability of sunscreen products influences the efficiency of protection with regard to UV-induced genotoxic or photoageing-related endpoints. The British Journal of Dermatology, 151(6), 1234-44.
Marrot L, et al. Photostability of Sunscreen Products Influences the Efficiency of Protection With Regard to UV-induced Genotoxic or Photoageing-related Endpoints. Br J Dermatol. 2004;151(6):1234-44. PubMed PMID: 15606520.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Photostability of sunscreen products influences the efficiency of protection with regard to UV-induced genotoxic or photoageing-related endpoints. AU - Marrot,L, AU - Belaïdi,J P, AU - Lejeune,F, AU - Meunier,J R, AU - Asselineau,D, AU - Bernerd,F, PY - 2004/12/21/pubmed PY - 2005/4/14/medline PY - 2004/12/21/entrez SP - 1234 EP - 44 JF - The British journal of dermatology JO - Br J Dermatol VL - 151 IS - 6 N2 - BACKGROUND: Acute as well as chronic sun exposure induces biologically damaging effects in skin including photoageing and cancer. Ultraviolet (UV)A radiation is involved in this process; it is therefore important that sunscreen products provide efficient and stable protection in this range of wavelengths. OBJECTIVES: This study based on in vitro approaches was performed to demonstrate that photostability is an essential requirement to protect against UVA-induced genetic and dermal alterations. METHODS: The protection afforded by two sunscreen products, differing with regard to their photostability, was studied using biological markers related to the genotoxic or photoageing impact of UVA or simulated solar UV radiation (UV-SSR). Comet assay was used to assess direct DNA breakage, photo-oxidized purines and lomefloxacin-induced DNA breaks in nuclei of normal human keratinocytes in culture. In similar conditions, detection of p53 accumulation was performed. The use of reconstructed skin in vitro allowed us to use a three-dimensional model to analyse the dermal and epidermal damage induced by UVA or UV-SSR exposure. Abnormal morphological features of the tissue as well as fibroblast alterations and matrix metalloproteinase-1 release induced by UV exposure have been studied after topical application of products on the skin surface. RESULTS: The results showed that the photostable product afforded better protection with regard to all the criteria studied, compared with the photounstable product. CONCLUSIONS: These data demonstrate that the loss of absorbing efficiency within the UVA wavelength domain due to photoinstability may have detrimental consequences on cell function and lead to impairments that have been implicated in genotoxic events as well as in the photoageing process. SN - 0007-0963 UR - https://www.unboundmedicine.com/medline/citation/15606520/Photostability_of_sunscreen_products_influences_the_efficiency_of_protection_with_regard_to_UV_induced_genotoxic_or_photoageing_related_endpoints_ L2 - https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0007-0963&date=2004&volume=151&issue=6&spage=1234 DB - PRIME DP - Unbound Medicine ER -