Functional activity of the M2 and M4 receptor subtypes in the spinal cord studied with muscarinic acetylcholine receptor knockout mice.J Pharmacol Exp Ther. 2005 May; 313(2):765-70.JP
Stimulation of spinal muscarinic acetylcholine receptors (mAChRs) produces potent analgesia. Both M(2) and M(4) mAChRs are coupled to similar G proteins (G(i/o) family) and play a critical role in the analgesic action of mAChR agonists. To determine the relative contribution of M(2) and M(4) subtypes to activation of G(i/o) proteins in the spinal cord, we examined the receptor-mediated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding in M(2) and M(4) subtype knockout (KO) mice. Basal [(35)S]GTPgammaS binding in the spinal cord was similar in the wild-type controls, M(2) and M(4) single-KO, and M(2)/M(4) double-KO mice. The spinal [(35)S]GTPgammaS binding stimulated by either muscarine or oxotremorine-M was not significantly different among three groups of wild-type mouse strains. In M(2) single-KO and M(2)/M(4) double-KO mice, the agonist-stimulated [(35)S]GTPgammaS binding was completely abolished in the spinal cord. Furthermore, the agonist-stimulated [(35)S]GTPgammaS binding in the spinal cord of M(4) single-KO mice was significantly reduced (approximately 15%), compared with that in wild-type controls. On the other hand, the spinal [(35)S]GTPgammaS binding stimulated by a mu-opioid agonist was not significantly different between wild-type and M(2) and M(4) KO mice. This study provides complementary new evidence that M(2) is the most predominant mAChR subtype coupled to the G(i/o) proteins in the spinal cord. Furthermore, these data suggest that a small but functionally significant population of M(4) receptors exists in the mouse spinal cord. The functional activity of these M(4) receptors seems to require the presence of M(2) receptors.