Tags

Type your tag names separated by a space and hit enter

Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation.
J Appl Physiol (1985). 2005 Jun; 98(6):2024-32.JA

Abstract

Cardiovascular autonomic modulation during 36 h of total sleep deprivation (SD) was assessed in 18 normal subjects (16 men, 2 women, 26.0 +/- 4.6 yr old). ECG and continuous blood pressure (BP) from radial artery tonometry were obtained at 2100 on the first study night (baseline) and every subsequent 12 h of SD. Each measurement period included resting supine, seated, and seated performing computerized tasks and measured vigilance and executive function. Subjects were not supine in the periods between measurements. Spectral analysis of heart rate variability (HRV) and BP variability (BPV) was computed for cardiac parasympathetic modulation [high-frequency power (HF)], sympathetic modulation [low-frequency power (LF)], sympathovagal balance (LF/HF power of R-R variability), and BPV sympathetic modulation (at LF). All spectral data were expressed in normalized units [(total power of the components/total power-very LF) x 100]. Spontaneous baroreflex sensitivity (BRS), based on systolic BP and pulse interval powers, was also measured. Supine and sitting, BPV LF was significantly increased from baseline at 12, 24, and 36 h of SD. Sitting, HRV LF was increased at 12 and 24 h of SD, HRV HF was decreased at 12 h SD, and HRV LF/HF power of R-R variability was increased at 12 h of SD. BRS was decreased at 24 h of SD supine and seated. During the simple reaction time task (vigilance testing), the significantly increased sympathetic and decreased parasympathetic cardiac modulation and BRS extended through 36 h of SD. In summary, acute SD was associated with increased sympathetic and decreased parasympathetic cardiovascular modulation and decreased BRS, most consistently in the seated position and during simple reaction-time testing.

Authors+Show Affiliations

Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians & Surgeons, 622 West 168th Street, VC 12-206, New York, NY 10032, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

15718408

Citation

Zhong, Xu, et al. "Increased Sympathetic and Decreased Parasympathetic Cardiovascular Modulation in Normal Humans With Acute Sleep Deprivation." Journal of Applied Physiology (Bethesda, Md. : 1985), vol. 98, no. 6, 2005, pp. 2024-32.
Zhong X, Hilton HJ, Gates GJ, et al. Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J Appl Physiol. 2005;98(6):2024-32.
Zhong, X., Hilton, H. J., Gates, G. J., Jelic, S., Stern, Y., Bartels, M. N., Demeersman, R. E., & Basner, R. C. (2005). Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. Journal of Applied Physiology (Bethesda, Md. : 1985), 98(6), 2024-32.
Zhong X, et al. Increased Sympathetic and Decreased Parasympathetic Cardiovascular Modulation in Normal Humans With Acute Sleep Deprivation. J Appl Physiol. 2005;98(6):2024-32. PubMed PMID: 15718408.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. AU - Zhong,Xu, AU - Hilton,H John, AU - Gates,Gregory J, AU - Jelic,Sanja, AU - Stern,Yaakov, AU - Bartels,Matthew N, AU - Demeersman,Ronald E, AU - Basner,Robert C, Y1 - 2005/02/17/ PY - 2005/2/19/pubmed PY - 2005/8/20/medline PY - 2005/2/19/entrez SP - 2024 EP - 32 JF - Journal of applied physiology (Bethesda, Md. : 1985) JO - J. Appl. Physiol. VL - 98 IS - 6 N2 - Cardiovascular autonomic modulation during 36 h of total sleep deprivation (SD) was assessed in 18 normal subjects (16 men, 2 women, 26.0 +/- 4.6 yr old). ECG and continuous blood pressure (BP) from radial artery tonometry were obtained at 2100 on the first study night (baseline) and every subsequent 12 h of SD. Each measurement period included resting supine, seated, and seated performing computerized tasks and measured vigilance and executive function. Subjects were not supine in the periods between measurements. Spectral analysis of heart rate variability (HRV) and BP variability (BPV) was computed for cardiac parasympathetic modulation [high-frequency power (HF)], sympathetic modulation [low-frequency power (LF)], sympathovagal balance (LF/HF power of R-R variability), and BPV sympathetic modulation (at LF). All spectral data were expressed in normalized units [(total power of the components/total power-very LF) x 100]. Spontaneous baroreflex sensitivity (BRS), based on systolic BP and pulse interval powers, was also measured. Supine and sitting, BPV LF was significantly increased from baseline at 12, 24, and 36 h of SD. Sitting, HRV LF was increased at 12 and 24 h of SD, HRV HF was decreased at 12 h SD, and HRV LF/HF power of R-R variability was increased at 12 h of SD. BRS was decreased at 24 h of SD supine and seated. During the simple reaction time task (vigilance testing), the significantly increased sympathetic and decreased parasympathetic cardiac modulation and BRS extended through 36 h of SD. In summary, acute SD was associated with increased sympathetic and decreased parasympathetic cardiovascular modulation and decreased BRS, most consistently in the seated position and during simple reaction-time testing. SN - 8750-7587 UR - https://www.unboundmedicine.com/medline/citation/15718408/Increased_sympathetic_and_decreased_parasympathetic_cardiovascular_modulation_in_normal_humans_with_acute_sleep_deprivation_ L2 - http://www.physiology.org/doi/full/10.1152/japplphysiol.00620.2004?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -