Tags

Type your tag names separated by a space and hit enter

Detection of a novel reactive metabolite of diclofenac: evidence for CYP2C9-mediated bioactivation via arene oxides.
Drug Metab Dispos. 2005 Jun; 33(6):706-13.DM

Abstract

A new glutathione adduct (M4) was tentatively identified, likely as 2'-hydroxy-3'-(glutathione-S-yl)-monoclofenac, using liquid chromatography-tandem mass spectrometry analysis of incubations of diclofenac with human liver microsomes. The same conjugate was not detected in incubations with either rat or monkey liver microsomes. Formation of M4 was mediated specifically by CYP2C9 in human liver microsomes, as evidenced by the following observations: 1) cDNA-expressed CYP2C9-catalyzing formation of M4; 2) inhibition of M4 formation by sulfaphenazole, a CYP2C9-selective inhibitor; and 3) strong correlation between the production of M4 and CYP2C9-mediated tolbutamide 4-hydroxylase activities in a panel of human liver microsome samples. Formation of M4 suggests the existence of a new reactive intermediate as diclofenac-2',3'-oxide. A tentative pathway states that diclofenac is oxidized to diclofenac-2',3'-oxide that reacts with glutathione (GSH) to form a thioether conjugate at the C-3' position, followed by a concomitant loss of chlorine to give rise to M4. Furthermore, a likely mechanism leading to the formation of diclofenac oxides is rationalized: CYP2C9-catalyzed oxidation at the C-3' position of the dichlorophenyl ring to form a cationic sigma-complex that subsequently results in diclofenac-3',4'-oxide and diclofenac-2',3'-oxide; the former oxide is converted to 4'-hydroxy-diclofenac as a major metabolite and can be trapped by GSH to produce 4'-hydroxy-3'-glutathione-S-yl diclofenac (M2), whereas the latter oxide forms 3'-hydroxy-diclofenac and can be trapped by GSH to produce M4. This mechanism is consistent with the structural modeling of the CYP2C9-diclofenac complex, which reveals that both the C-3' and C-4' of the dichlorophenyl ring are proximate to the heme group.

Authors+Show Affiliations

Division of Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, LLC, Spring House, PA 19477-0779, USA. zyan@prdus.jnj.comNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

15764717

Citation

Yan, Zhengyin, et al. "Detection of a Novel Reactive Metabolite of Diclofenac: Evidence for CYP2C9-mediated Bioactivation Via Arene Oxides." Drug Metabolism and Disposition: the Biological Fate of Chemicals, vol. 33, no. 6, 2005, pp. 706-13.
Yan Z, Li J, Huebert N, et al. Detection of a novel reactive metabolite of diclofenac: evidence for CYP2C9-mediated bioactivation via arene oxides. Drug Metab Dispos. 2005;33(6):706-13.
Yan, Z., Li, J., Huebert, N., Caldwell, G. W., Du, Y., & Zhong, H. (2005). Detection of a novel reactive metabolite of diclofenac: evidence for CYP2C9-mediated bioactivation via arene oxides. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 33(6), 706-13.
Yan Z, et al. Detection of a Novel Reactive Metabolite of Diclofenac: Evidence for CYP2C9-mediated Bioactivation Via Arene Oxides. Drug Metab Dispos. 2005;33(6):706-13. PubMed PMID: 15764717.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Detection of a novel reactive metabolite of diclofenac: evidence for CYP2C9-mediated bioactivation via arene oxides. AU - Yan,Zhengyin, AU - Li,Jian, AU - Huebert,Norman, AU - Caldwell,Gary W, AU - Du,Yanming, AU - Zhong,Hua, Y1 - 2005/03/11/ PY - 2005/3/15/pubmed PY - 2005/8/30/medline PY - 2005/3/15/entrez SP - 706 EP - 13 JF - Drug metabolism and disposition: the biological fate of chemicals JO - Drug Metab Dispos VL - 33 IS - 6 N2 - A new glutathione adduct (M4) was tentatively identified, likely as 2'-hydroxy-3'-(glutathione-S-yl)-monoclofenac, using liquid chromatography-tandem mass spectrometry analysis of incubations of diclofenac with human liver microsomes. The same conjugate was not detected in incubations with either rat or monkey liver microsomes. Formation of M4 was mediated specifically by CYP2C9 in human liver microsomes, as evidenced by the following observations: 1) cDNA-expressed CYP2C9-catalyzing formation of M4; 2) inhibition of M4 formation by sulfaphenazole, a CYP2C9-selective inhibitor; and 3) strong correlation between the production of M4 and CYP2C9-mediated tolbutamide 4-hydroxylase activities in a panel of human liver microsome samples. Formation of M4 suggests the existence of a new reactive intermediate as diclofenac-2',3'-oxide. A tentative pathway states that diclofenac is oxidized to diclofenac-2',3'-oxide that reacts with glutathione (GSH) to form a thioether conjugate at the C-3' position, followed by a concomitant loss of chlorine to give rise to M4. Furthermore, a likely mechanism leading to the formation of diclofenac oxides is rationalized: CYP2C9-catalyzed oxidation at the C-3' position of the dichlorophenyl ring to form a cationic sigma-complex that subsequently results in diclofenac-3',4'-oxide and diclofenac-2',3'-oxide; the former oxide is converted to 4'-hydroxy-diclofenac as a major metabolite and can be trapped by GSH to produce 4'-hydroxy-3'-glutathione-S-yl diclofenac (M2), whereas the latter oxide forms 3'-hydroxy-diclofenac and can be trapped by GSH to produce M4. This mechanism is consistent with the structural modeling of the CYP2C9-diclofenac complex, which reveals that both the C-3' and C-4' of the dichlorophenyl ring are proximate to the heme group. SN - 0090-9556 UR - https://www.unboundmedicine.com/medline/citation/15764717/Detection_of_a_novel_reactive_metabolite_of_diclofenac:_evidence_for_CYP2C9_mediated_bioactivation_via_arene_oxides_ DB - PRIME DP - Unbound Medicine ER -