Tags

Type your tag names separated by a space and hit enter

Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.
Biochem J. 2005 Jul 15; 389(Pt 2):507-15.BJ

Abstract

Lys-80 of Candida tenuis xylose reductase (AKR2B5) is conserved throughout the aldo-keto reductase protein superfamily and may prime the nearby Tyr-51 for general acid catalysis to NAD(P)H-dependent carbonyl group reduction. We have examined the catalytic significance of side-chain substitutions in two AKR2B5 mutants, Lys-80-->Ala (K80A) and Asp-46-->Asn Lys-80-->Ala (D46N K80A), using steady-state kinetic analysis and restoration of activity with external amines. Binding of NAD+ (Kd = 24 microM) and NADP+ (Kd = 0.03 microM) was 10- and 40-fold tighter in K80A than the wild-type enzyme, whereas binding of NADH (Kd = 51 microM) and NADPH (Kd = 19 microM) was weakened 2- and 16-fold in this mutant respectively. D46N K80A bound NAD(P)H and NAD(P)+ uniformly approx. 5-fold less tightly than the wild-type enzyme. The second-order rate constant for non-covalent restoration of NADH-dependent reductase activity (kmax/Kamine) by protonated ethylamine was 0.11 M(-1).s(-1) for K80A, whereas no detectable rescue occurred for D46N K80A. After correction for effects of side-chain hydrophobicity, we obtained a linear free energy relationship of log (kmax/Kamine) and amine group pKa (slope = +0.29; r2 = 0.93) at pH 7.0. pH profiles of log (kcat/Km) for carbonyl group reduction by wild-type and D46N K80A revealed identical and kinetically unperturbed pKa values of 8.50 (+/-0.20). Therefore the protonated side chain of Lys-80 is not an essential activator of general acid catalysis by AKR2B5. Stabilized structurally through the salt-link interaction with the negatively charged Asp-46, it is proposed to pull the side chain of Tyr-51 into the catalytic position, leading to a preorganized polar environment of overall neutral charge, in which approximation of uncharged reactive groups is favoured and thus hydride transfer from NAD(P)H is strongly preferred. Lys-80 affects further the directional preference of AKR2B5 for NAD(P)H-dependent reduction by increasing NAD(P)H compared with NAD(P)+-binding selectivity.

Authors+Show Affiliations

Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

15799715

Citation

Kratzer, Regina, and Bernd Nidetzky. "Electrostatic Stabilization in a Pre-organized Polar Active Site: the Catalytic Role of Lys-80 in Candida Tenuis Xylose Reductase (AKR2B5) Probed By Site-directed Mutagenesis and Functional Complementation Studies." The Biochemical Journal, vol. 389, no. Pt 2, 2005, pp. 507-15.
Kratzer R, Nidetzky B. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Biochem J. 2005;389(Pt 2):507-15.
Kratzer, R., & Nidetzky, B. (2005). Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. The Biochemical Journal, 389(Pt 2), 507-15.
Kratzer R, Nidetzky B. Electrostatic Stabilization in a Pre-organized Polar Active Site: the Catalytic Role of Lys-80 in Candida Tenuis Xylose Reductase (AKR2B5) Probed By Site-directed Mutagenesis and Functional Complementation Studies. Biochem J. 2005 Jul 15;389(Pt 2):507-15. PubMed PMID: 15799715.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. AU - Kratzer,Regina, AU - Nidetzky,Bernd, PY - 2005/4/1/pubmed PY - 2005/12/22/medline PY - 2005/4/1/entrez SP - 507 EP - 15 JF - The Biochemical journal JO - Biochem. J. VL - 389 IS - Pt 2 N2 - Lys-80 of Candida tenuis xylose reductase (AKR2B5) is conserved throughout the aldo-keto reductase protein superfamily and may prime the nearby Tyr-51 for general acid catalysis to NAD(P)H-dependent carbonyl group reduction. We have examined the catalytic significance of side-chain substitutions in two AKR2B5 mutants, Lys-80-->Ala (K80A) and Asp-46-->Asn Lys-80-->Ala (D46N K80A), using steady-state kinetic analysis and restoration of activity with external amines. Binding of NAD+ (Kd = 24 microM) and NADP+ (Kd = 0.03 microM) was 10- and 40-fold tighter in K80A than the wild-type enzyme, whereas binding of NADH (Kd = 51 microM) and NADPH (Kd = 19 microM) was weakened 2- and 16-fold in this mutant respectively. D46N K80A bound NAD(P)H and NAD(P)+ uniformly approx. 5-fold less tightly than the wild-type enzyme. The second-order rate constant for non-covalent restoration of NADH-dependent reductase activity (kmax/Kamine) by protonated ethylamine was 0.11 M(-1).s(-1) for K80A, whereas no detectable rescue occurred for D46N K80A. After correction for effects of side-chain hydrophobicity, we obtained a linear free energy relationship of log (kmax/Kamine) and amine group pKa (slope = +0.29; r2 = 0.93) at pH 7.0. pH profiles of log (kcat/Km) for carbonyl group reduction by wild-type and D46N K80A revealed identical and kinetically unperturbed pKa values of 8.50 (+/-0.20). Therefore the protonated side chain of Lys-80 is not an essential activator of general acid catalysis by AKR2B5. Stabilized structurally through the salt-link interaction with the negatively charged Asp-46, it is proposed to pull the side chain of Tyr-51 into the catalytic position, leading to a preorganized polar environment of overall neutral charge, in which approximation of uncharged reactive groups is favoured and thus hydride transfer from NAD(P)H is strongly preferred. Lys-80 affects further the directional preference of AKR2B5 for NAD(P)H-dependent reduction by increasing NAD(P)H compared with NAD(P)+-binding selectivity. SN - 1470-8728 UR - https://www.unboundmedicine.com/medline/citation/15799715/Electrostatic_stabilization_in_a_pre_organized_polar_active_site:_the_catalytic_role_of_Lys_80_in_Candida_tenuis_xylose_reductase__AKR2B5__probed_by_site_directed_mutagenesis_and_functional_complementation_studies_ L2 - https://portlandpress.com/biochemj/article-lookup/doi/10.1042/BJ20050167 DB - PRIME DP - Unbound Medicine ER -