Tags

Type your tag names separated by a space and hit enter

Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite (gamma-AIOOH) interface.
Environ Sci Technol. 2005 Jun 01; 39(11):4027-34.ES

Abstract

The influence of soil-derived fulvic acid (SFA) on Ni(II) sorption and speciation in aqueous boehmite (gamma-AIOOH) suspensions was evaluated using a combination of sorption experiments and Ni K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy measurements. Co-sorption of SFA at the aqueous-boehmite interface modifies both the extent of Ni(II) sorption as well as the local structure of the sorbing Ni(II) ions. In SFA-free suspensions, Ni(II) sorbs by forming inner-sphere bidentate mononuclear complexes with surface aluminol groups. Addition of SFA increases Ni(II) sorption at pH conditions below the sorption edge observed in SFA-free suspensions and diminishes Ni(II) sorption at pH above the SFA-free sorption edge. When SFA is co-sorbed to boehmite, Ni(II) sorbs by forming both ligand-bridging ternary surface complexes (Ni(II)-SFA-boehmite) as well as surface complexes in which Ni(II) remains directly bonded to aluminol groups, that is, binary Ni(II)-boehmite or metal-bridging ternary surface complexes (SFA-Ni(II)-boehmite). The relative contribution of the individual sorption complexes depends heavily on geochemical conditions; the concentration of ligand-bridging complexes increases with increasing SFA sorption and decreasing pH. The local structure of sorbed Ni(II) does not change with increasing reaction time even though the extent of sorption continues to increase. This supports a slow uptake mechanism where surface or intraparticle diffusion processes are rate-limiting. This work demonstrates that the association of humic constituents with soil minerals can significantly modify the mechanisms controlling trace metal sorption and transport in heterogeneous aquatic environments.

Authors+Show Affiliations

Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, USA. strthmnn@uiuc.eduNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

15984779

Citation

Strathmann, Timothy J., and Satish C B. Myneni. "Effect of Soil Fulvic Acid On nickel(II) Sorption and Bonding at the Aqueous-boehmite (gamma-AIOOH) Interface." Environmental Science & Technology, vol. 39, no. 11, 2005, pp. 4027-34.
Strathmann TJ, Myneni SC. Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite (gamma-AIOOH) interface. Environ Sci Technol. 2005;39(11):4027-34.
Strathmann, T. J., & Myneni, S. C. (2005). Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite (gamma-AIOOH) interface. Environmental Science & Technology, 39(11), 4027-34.
Strathmann TJ, Myneni SC. Effect of Soil Fulvic Acid On nickel(II) Sorption and Bonding at the Aqueous-boehmite (gamma-AIOOH) Interface. Environ Sci Technol. 2005 Jun 1;39(11):4027-34. PubMed PMID: 15984779.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite (gamma-AIOOH) interface. AU - Strathmann,Timothy J, AU - Myneni,Satish C B, PY - 2005/6/30/pubmed PY - 2005/10/7/medline PY - 2005/6/30/entrez SP - 4027 EP - 34 JF - Environmental science & technology JO - Environ Sci Technol VL - 39 IS - 11 N2 - The influence of soil-derived fulvic acid (SFA) on Ni(II) sorption and speciation in aqueous boehmite (gamma-AIOOH) suspensions was evaluated using a combination of sorption experiments and Ni K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy measurements. Co-sorption of SFA at the aqueous-boehmite interface modifies both the extent of Ni(II) sorption as well as the local structure of the sorbing Ni(II) ions. In SFA-free suspensions, Ni(II) sorbs by forming inner-sphere bidentate mononuclear complexes with surface aluminol groups. Addition of SFA increases Ni(II) sorption at pH conditions below the sorption edge observed in SFA-free suspensions and diminishes Ni(II) sorption at pH above the SFA-free sorption edge. When SFA is co-sorbed to boehmite, Ni(II) sorbs by forming both ligand-bridging ternary surface complexes (Ni(II)-SFA-boehmite) as well as surface complexes in which Ni(II) remains directly bonded to aluminol groups, that is, binary Ni(II)-boehmite or metal-bridging ternary surface complexes (SFA-Ni(II)-boehmite). The relative contribution of the individual sorption complexes depends heavily on geochemical conditions; the concentration of ligand-bridging complexes increases with increasing SFA sorption and decreasing pH. The local structure of sorbed Ni(II) does not change with increasing reaction time even though the extent of sorption continues to increase. This supports a slow uptake mechanism where surface or intraparticle diffusion processes are rate-limiting. This work demonstrates that the association of humic constituents with soil minerals can significantly modify the mechanisms controlling trace metal sorption and transport in heterogeneous aquatic environments. SN - 0013-936X UR - https://www.unboundmedicine.com/medline/citation/15984779/Effect_of_soil_fulvic_acid_on_nickel_II__sorption_and_bonding_at_the_aqueous_boehmite__gamma_AIOOH__interface_ L2 - https://doi.org/10.1021/es0481629 DB - PRIME DP - Unbound Medicine ER -