Tags

Type your tag names separated by a space and hit enter

Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying.
J Microencapsul. 2005 Mar; 22(2):179-92.JM

Abstract

This paper describes vitamin C-encapsulated chitosan microspheres cross-linked with tripolyphosphate (TPP) using a new process prepared by spray drying intended for oral delivery of vitamin C. Thus, prepared microspheres were evaluated by loading efficiency, particles size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), zeta potential and in vitro release studies. The microspheres so prepared had a good sphericity and shape but varied with the volume of cross-linking agent solution added. They were positively charged. The mean particle size ranged from 6.1-9.0 microm. The size, shape, encapsulation efficiency, zeta potential and release rate were influenced by the volume of cross-linking agent. With the increasing amount of cross-linking agent, both the particle size and release rate were increased. Encapsulation efficiency decreased from 45.05-58.30% with the increasing amount of TPP solution from 10-30 ml. FTIR spectroscopy study showed that the vitamin C was found to be stable after encapsulation. XRD studies revealed that vitamin C is dispersed at the molecular level in the TPP-chitosan matrix. Well-defined change in the surface morphology was observed with the varying volume of TPP. The sphericity of chitosan microspheres was lost at higher volume of cross-linking agent. The release of vitamin C from these microspheres was sustained and affected by the volume of cross-linking agent added. The release of vitamin C from TPP-chitosan microspheres followed Fick's law of diffusion.

Authors+Show Affiliations

Graduate School of Biotechnology, Korea University, Seoul.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

16019903

Citation

Desai, K G H., and H J. Park. "Encapsulation of Vitamin C in Tripolyphosphate Cross-linked Chitosan Microspheres By Spray Drying." Journal of Microencapsulation, vol. 22, no. 2, 2005, pp. 179-92.
Desai KG, Park HJ. Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J Microencapsul. 2005;22(2):179-92.
Desai, K. G., & Park, H. J. (2005). Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. Journal of Microencapsulation, 22(2), 179-92.
Desai KG, Park HJ. Encapsulation of Vitamin C in Tripolyphosphate Cross-linked Chitosan Microspheres By Spray Drying. J Microencapsul. 2005;22(2):179-92. PubMed PMID: 16019903.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. AU - Desai,K G H, AU - Park,H J, PY - 2005/7/16/pubmed PY - 2005/9/21/medline PY - 2005/7/16/entrez SP - 179 EP - 92 JF - Journal of microencapsulation JO - J Microencapsul VL - 22 IS - 2 N2 - This paper describes vitamin C-encapsulated chitosan microspheres cross-linked with tripolyphosphate (TPP) using a new process prepared by spray drying intended for oral delivery of vitamin C. Thus, prepared microspheres were evaluated by loading efficiency, particles size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), zeta potential and in vitro release studies. The microspheres so prepared had a good sphericity and shape but varied with the volume of cross-linking agent solution added. They were positively charged. The mean particle size ranged from 6.1-9.0 microm. The size, shape, encapsulation efficiency, zeta potential and release rate were influenced by the volume of cross-linking agent. With the increasing amount of cross-linking agent, both the particle size and release rate were increased. Encapsulation efficiency decreased from 45.05-58.30% with the increasing amount of TPP solution from 10-30 ml. FTIR spectroscopy study showed that the vitamin C was found to be stable after encapsulation. XRD studies revealed that vitamin C is dispersed at the molecular level in the TPP-chitosan matrix. Well-defined change in the surface morphology was observed with the varying volume of TPP. The sphericity of chitosan microspheres was lost at higher volume of cross-linking agent. The release of vitamin C from these microspheres was sustained and affected by the volume of cross-linking agent added. The release of vitamin C from TPP-chitosan microspheres followed Fick's law of diffusion. SN - 0265-2048 UR - https://www.unboundmedicine.com/medline/citation/16019903/Encapsulation_of_vitamin_C_in_tripolyphosphate_cross_linked_chitosan_microspheres_by_spray_drying_ L2 - https://www.tandfonline.com/doi/full/10.1080/02652040400026533 DB - PRIME DP - Unbound Medicine ER -