Tags

Type your tag names separated by a space and hit enter

Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic rats.
Eur J Neurosci. 2005 Jul; 22(2):361-70.EJ

Abstract

The vanilloid TRPV1 receptor, present on primary afferent fibres, is activated by noxious heat, low pH and endogenous vanilloids. Changes in the function or distribution of TRPV1 receptors may play an important role in pain induced by inflammation or neuropathy. The aim of the present study was to evaluate the role of peripheral TRPV1 receptors in thermal nociception in rat models of inflammatory and neuropathic pain. Here, we have determined the effects of peripheral administration of the potent TRPV1 receptor antagonist iodoresiniferatoxin (IRTX) on noxious heat (45 degrees C)-evoked responses of spinal wide dynamic range (WDR) neurons in naïve, carrageenan-inflamed, sham-operated and L5/6 spinal nerve-ligated (SNL) anaesthetized rats in vivo. In addition, effects of peripheral administration of IRTX on mechanically evoked responses of WDR neurons were determined in sham-operated and SNL rats. Carrageenan inflammation significantly (P<0.05) increased the 45 degrees C-evoked responses of WDR neurons. Intraplantar injection of the lower dose of IRTX (0.004 microg) inhibited (P<0.05) 45 degrees C-evoked responses of WDR neurons in carrageenan-inflamed, but not in naïve, rats. The higher dose of IRTX (0.4 microg) significantly (P<0.05) inhibited 45 degrees C-evoked responses in both inflamed and naïve rats. In sham-operated and SNL rats, IRTX (0.004 and 0.4 microg) significantly (P<0.05) inhibited 45 degrees C-evoked, but had no effect on mechanically evoked responses of WDR neurons. These data support the role of peripheral TRPV1 receptors in noxious thermal transmission in naïve, inflamed and neuropathic rats, and suggest that there is an increased functional contribution of peripheral TRPV1 receptors following acute inflammation.

Authors+Show Affiliations

Institute of Neuroscience, School of Biomedical Sciences, E Floor, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK. maulik.jhaveri@nottingham.ac.ukNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

16045489

Citation

Jhaveri, Maulik D., et al. "Inhibition of Peripheral Vanilloid TRPV1 Receptors Reduces Noxious Heat-evoked Responses of Dorsal Horn Neurons in Naïve, Carrageenan-inflamed and Neuropathic Rats." The European Journal of Neuroscience, vol. 22, no. 2, 2005, pp. 361-70.
Jhaveri MD, Elmes SJ, Kendall DA, et al. Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic rats. Eur J Neurosci. 2005;22(2):361-70.
Jhaveri, M. D., Elmes, S. J., Kendall, D. A., & Chapman, V. (2005). Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic rats. The European Journal of Neuroscience, 22(2), 361-70.
Jhaveri MD, et al. Inhibition of Peripheral Vanilloid TRPV1 Receptors Reduces Noxious Heat-evoked Responses of Dorsal Horn Neurons in Naïve, Carrageenan-inflamed and Neuropathic Rats. Eur J Neurosci. 2005;22(2):361-70. PubMed PMID: 16045489.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic rats. AU - Jhaveri,Maulik D, AU - Elmes,Steven J R, AU - Kendall,David A, AU - Chapman,Victoria, PY - 2005/7/28/pubmed PY - 2005/9/24/medline PY - 2005/7/28/entrez SP - 361 EP - 70 JF - The European journal of neuroscience JO - Eur J Neurosci VL - 22 IS - 2 N2 - The vanilloid TRPV1 receptor, present on primary afferent fibres, is activated by noxious heat, low pH and endogenous vanilloids. Changes in the function or distribution of TRPV1 receptors may play an important role in pain induced by inflammation or neuropathy. The aim of the present study was to evaluate the role of peripheral TRPV1 receptors in thermal nociception in rat models of inflammatory and neuropathic pain. Here, we have determined the effects of peripheral administration of the potent TRPV1 receptor antagonist iodoresiniferatoxin (IRTX) on noxious heat (45 degrees C)-evoked responses of spinal wide dynamic range (WDR) neurons in naïve, carrageenan-inflamed, sham-operated and L5/6 spinal nerve-ligated (SNL) anaesthetized rats in vivo. In addition, effects of peripheral administration of IRTX on mechanically evoked responses of WDR neurons were determined in sham-operated and SNL rats. Carrageenan inflammation significantly (P<0.05) increased the 45 degrees C-evoked responses of WDR neurons. Intraplantar injection of the lower dose of IRTX (0.004 microg) inhibited (P<0.05) 45 degrees C-evoked responses of WDR neurons in carrageenan-inflamed, but not in naïve, rats. The higher dose of IRTX (0.4 microg) significantly (P<0.05) inhibited 45 degrees C-evoked responses in both inflamed and naïve rats. In sham-operated and SNL rats, IRTX (0.004 and 0.4 microg) significantly (P<0.05) inhibited 45 degrees C-evoked, but had no effect on mechanically evoked responses of WDR neurons. These data support the role of peripheral TRPV1 receptors in noxious thermal transmission in naïve, inflamed and neuropathic rats, and suggest that there is an increased functional contribution of peripheral TRPV1 receptors following acute inflammation. SN - 0953-816X UR - https://www.unboundmedicine.com/medline/citation/16045489/Inhibition_of_peripheral_vanilloid_TRPV1_receptors_reduces_noxious_heat_evoked_responses_of_dorsal_horn_neurons_in_naïve_carrageenan_inflamed_and_neuropathic_rats_ L2 - https://doi.org/10.1111/j.1460-9568.2005.04227.x DB - PRIME DP - Unbound Medicine ER -