Tags

Type your tag names separated by a space and hit enter

Insights into the genomes of archaea mediating the anaerobic oxidation of methane.
Environ Microbiol. 2005 Dec; 7(12):1937-51.EM

Abstract

The anaerobic oxidation of methane is a globally significant process which is mediated by consortia of yet uncultivated methanotrophic archaea (ANME) and sulfate-reducing bacteria. In order to gain deeper insights into genome characteristics of the different ANME groups, large-insert genomic libraries were constructed using DNA extracted from a methanotrophic microbial mat growing in the anoxic part of the Black Sea, and from sediments above gas hydrates at the Hydrate Ridge off the coast of Oregon. Analysis of these fosmid libraries with respect to archaeal 16S rRNA gene diversity revealed a single ANME-1b ribotype for the Black Sea libraries, whereas the sequences derived from the Hydrate Ridge library phylogenetically affiliated with the ANME-2a, ANME-2c and ANME-3 group. Genome walking for ANME-1b resulted in a contiguous 155 kb composite genome fragment. The comparison of a set of four genomic fragments belonging to the different ANME groups revealed differences in the rRNA operon structure and the average G+C content, with the ANME-2c contig showing the highest divergence within the set. A detailed analysis of the ANME contigs with respect to genes putatively involved in the anaerobic oxidation of methane led to the identification of: (i) a putative N5,N10-methenyltetrahydromethanopterin cyclohydrolase gene, (ii) a gene cluster supposedly encoding a novel type of heterodisulfide reductase/dehydrogenase complex and (iii) a gene cluster putatively encoding a new type of CO dehydrogenase/acetyl-CoA synthase enzyme complex.

Authors+Show Affiliations

Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany. ameyerdi@mpi-bremen.deNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

16309392

Citation

Meyerdierks, Anke, et al. "Insights Into the Genomes of Archaea Mediating the Anaerobic Oxidation of Methane." Environmental Microbiology, vol. 7, no. 12, 2005, pp. 1937-51.
Meyerdierks A, Kube M, Lombardot T, et al. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ Microbiol. 2005;7(12):1937-51.
Meyerdierks, A., Kube, M., Lombardot, T., Knittel, K., Bauer, M., Glöckner, F. O., Reinhardt, R., & Amann, R. (2005). Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environmental Microbiology, 7(12), 1937-51.
Meyerdierks A, et al. Insights Into the Genomes of Archaea Mediating the Anaerobic Oxidation of Methane. Environ Microbiol. 2005;7(12):1937-51. PubMed PMID: 16309392.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Insights into the genomes of archaea mediating the anaerobic oxidation of methane. AU - Meyerdierks,Anke, AU - Kube,Michael, AU - Lombardot,Thierry, AU - Knittel,Katrin, AU - Bauer,Margarete, AU - Glöckner,Frank Oliver, AU - Reinhardt,Richard, AU - Amann,Rudolf, PY - 2005/11/29/pubmed PY - 2006/2/14/medline PY - 2005/11/29/entrez SP - 1937 EP - 51 JF - Environmental microbiology JO - Environ. Microbiol. VL - 7 IS - 12 N2 - The anaerobic oxidation of methane is a globally significant process which is mediated by consortia of yet uncultivated methanotrophic archaea (ANME) and sulfate-reducing bacteria. In order to gain deeper insights into genome characteristics of the different ANME groups, large-insert genomic libraries were constructed using DNA extracted from a methanotrophic microbial mat growing in the anoxic part of the Black Sea, and from sediments above gas hydrates at the Hydrate Ridge off the coast of Oregon. Analysis of these fosmid libraries with respect to archaeal 16S rRNA gene diversity revealed a single ANME-1b ribotype for the Black Sea libraries, whereas the sequences derived from the Hydrate Ridge library phylogenetically affiliated with the ANME-2a, ANME-2c and ANME-3 group. Genome walking for ANME-1b resulted in a contiguous 155 kb composite genome fragment. The comparison of a set of four genomic fragments belonging to the different ANME groups revealed differences in the rRNA operon structure and the average G+C content, with the ANME-2c contig showing the highest divergence within the set. A detailed analysis of the ANME contigs with respect to genes putatively involved in the anaerobic oxidation of methane led to the identification of: (i) a putative N5,N10-methenyltetrahydromethanopterin cyclohydrolase gene, (ii) a gene cluster supposedly encoding a novel type of heterodisulfide reductase/dehydrogenase complex and (iii) a gene cluster putatively encoding a new type of CO dehydrogenase/acetyl-CoA synthase enzyme complex. SN - 1462-2912 UR - https://www.unboundmedicine.com/medline/citation/16309392/Insights_into_the_genomes_of_archaea_mediating_the_anaerobic_oxidation_of_methane_ L2 - https://doi.org/10.1111/j.1462-2920.2005.00844.x DB - PRIME DP - Unbound Medicine ER -