Tags

Type your tag names separated by a space and hit enter

Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains.
Neurobiol Aging 2007; 28(1):29-41NA

Abstract

The reaction of lysine and arginine residues of proteins with 1,2-dicarbonyl compounds result in the formation of advanced glycation end products (AGEs). Accumulation of AGEs is a characteristic feature of the aging brain and contributes to the development of neurodegenerative diseases such as Alzheimer's disease (AD). Therefore, it is of particular interest to study the cellular defense mechanisms against AGE formation and particularly the detoxification of their precursors. AGE precursor compounds such as methylglyoxal and glyoxal were cellulary detoxified by the glyoxalase system, consisting of glyoxalases I and II. Glyoxalase I levels are diminished in old aged brains but elevated in AD brains. However, it is still unknown how glyoxalase I level of AD brains changes in a disease and in an age-dependent manner. Therefore, we investigated the AD stage- and the age-dependent levels of glyoxalase I in the Brodmann area 22 of AD brains (n=25) and healthy controls (n=10). Our results obtained from RT-PCR reveal reducing glyoxalase I RNA levels with advancing stage of AD and with increasing age. Western Blot analysis indicates that in comparison to healthy controls, glyoxalase I protein amounts are 1.5-fold increased in early AD subjects and continuously decrease in middle and late stages of AD. The glyoxalase I protein amounts of AD patients also decrease with age. Results obtained from glyoxalase I activity measurement show 1.05-1.2-fold diminished levels in AD brains compared to healthy controls and no significant decrease neither with the stage of AD nor with age. The immunohistochemical investigations demonstrate an elevated number of glyoxalase I stained neurons in brains of early and middle but not in late AD subjects compared to age-matched healthy controls. In addition, the stage-dependent immunohistochemical investigation demonstrates that with reduced glyoxalase I staining AGE deposits prevail, specifically in late stage of AD. In conclusion, the decrease of glyoxalase I expression with increasing AD stage might be one reason for methylglyoxal-induced neuronal impairment, apoptosis, and AGE formation in plaques and tangles.

Authors+Show Affiliations

Neuroimmunological Cell Biology Unit, IZKF Leipzig, Inselstrasse 22, 04103 Leipzig, Germany.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

16427160

Citation

Kuhla, Björn, et al. "Age- and Stage-dependent Glyoxalase I Expression and Its Activity in Normal and Alzheimer's Disease Brains." Neurobiology of Aging, vol. 28, no. 1, 2007, pp. 29-41.
Kuhla B, Boeck K, Schmidt A, et al. Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains. Neurobiol Aging. 2007;28(1):29-41.
Kuhla, B., Boeck, K., Schmidt, A., Ogunlade, V., Arendt, T., Münch, G., & Lüth, H. J. (2007). Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains. Neurobiology of Aging, 28(1), pp. 29-41.
Kuhla B, et al. Age- and Stage-dependent Glyoxalase I Expression and Its Activity in Normal and Alzheimer's Disease Brains. Neurobiol Aging. 2007;28(1):29-41. PubMed PMID: 16427160.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains. AU - Kuhla,Björn, AU - Boeck,Katharina, AU - Schmidt,Angela, AU - Ogunlade,Vera, AU - Arendt,Thomas, AU - Münch,Gerald, AU - Lüth,Hans-Joachim, Y1 - 2006/01/19/ PY - 2005/06/16/received PY - 2005/10/24/revised PY - 2005/11/09/accepted PY - 2006/1/24/pubmed PY - 2006/12/29/medline PY - 2006/1/24/entrez SP - 29 EP - 41 JF - Neurobiology of aging JO - Neurobiol. Aging VL - 28 IS - 1 N2 - The reaction of lysine and arginine residues of proteins with 1,2-dicarbonyl compounds result in the formation of advanced glycation end products (AGEs). Accumulation of AGEs is a characteristic feature of the aging brain and contributes to the development of neurodegenerative diseases such as Alzheimer's disease (AD). Therefore, it is of particular interest to study the cellular defense mechanisms against AGE formation and particularly the detoxification of their precursors. AGE precursor compounds such as methylglyoxal and glyoxal were cellulary detoxified by the glyoxalase system, consisting of glyoxalases I and II. Glyoxalase I levels are diminished in old aged brains but elevated in AD brains. However, it is still unknown how glyoxalase I level of AD brains changes in a disease and in an age-dependent manner. Therefore, we investigated the AD stage- and the age-dependent levels of glyoxalase I in the Brodmann area 22 of AD brains (n=25) and healthy controls (n=10). Our results obtained from RT-PCR reveal reducing glyoxalase I RNA levels with advancing stage of AD and with increasing age. Western Blot analysis indicates that in comparison to healthy controls, glyoxalase I protein amounts are 1.5-fold increased in early AD subjects and continuously decrease in middle and late stages of AD. The glyoxalase I protein amounts of AD patients also decrease with age. Results obtained from glyoxalase I activity measurement show 1.05-1.2-fold diminished levels in AD brains compared to healthy controls and no significant decrease neither with the stage of AD nor with age. The immunohistochemical investigations demonstrate an elevated number of glyoxalase I stained neurons in brains of early and middle but not in late AD subjects compared to age-matched healthy controls. In addition, the stage-dependent immunohistochemical investigation demonstrates that with reduced glyoxalase I staining AGE deposits prevail, specifically in late stage of AD. In conclusion, the decrease of glyoxalase I expression with increasing AD stage might be one reason for methylglyoxal-induced neuronal impairment, apoptosis, and AGE formation in plaques and tangles. SN - 1558-1497 UR - https://www.unboundmedicine.com/medline/citation/16427160/Age__and_stage_dependent_glyoxalase_I_expression_and_its_activity_in_normal_and_Alzheimer's_disease_brains_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0197-4580(05)00405-7 DB - PRIME DP - Unbound Medicine ER -