Tags

Type your tag names separated by a space and hit enter

Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid.
J Biomater Appl 2006; 21(1):49-73JB

Abstract

Laser surface melting (LSM) of Ti-6Al-4V is performed in argon to improve its properties, such as microstructure, corrosion, and wear for biomedical applications. Corrosion behavior is investigated by conducting electrochemical polarization experiments in simulated body fluid (Ringer's solution) at 37 C. Wear properties are evaluated in Ringer's solution using pin-on-disc apparatus at a slow speed. Untreated Ti-6Al-4V contains alpha+beta phase. After laser surface melting, it transforms to acicular alpha embedded in the prior beta matrix. Grain growth in the range of 65-89 microm with increase in laser power from 800 to 1500 W due to increase in associated temperature is observed. The hardness of as-laserprocessed Ti-6Al-4V alloy is more (275-297 HV) than that of the untreated alloy (254 HV). Passivation currents are significantly reduced to < 4.3 microA/cm2 after laser treatment compared to untreated Ti-6Al-4V (approximately 12 microA/cm2). The wear resistance of laser-treated Ti-6Al-4V in simulated body fluid is enhanced compared to that of the untreated one. It is the highest for the one that is processed at a laser power of 800 W. Typical micro-cutting features of abrasive wear is the prominent mechanism of wear in both untreated and as-laser-treated Ti-6Al-4V. Fragmentation of wear debris assisted by microcracking was responsible for mass loss during the wear of untreated Ti-6Al-4V in Ringer's solution.

Authors+Show Affiliations

Department of Materials Science and Engineering The University of Tennessee, Knoxville, TN 37996, USA.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

16443617

Citation

Singh, Raghuvir, et al. "Laser Surface Modification of Ti--6Al--4V: Wear and Corrosion Characterization in Simulated Biofluid." Journal of Biomaterials Applications, vol. 21, no. 1, 2006, pp. 49-73.
Singh R, Kurella A, Dahotre NB. Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid. J Biomater Appl. 2006;21(1):49-73.
Singh, R., Kurella, A., & Dahotre, N. B. (2006). Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid. Journal of Biomaterials Applications, 21(1), pp. 49-73.
Singh R, Kurella A, Dahotre NB. Laser Surface Modification of Ti--6Al--4V: Wear and Corrosion Characterization in Simulated Biofluid. J Biomater Appl. 2006;21(1):49-73. PubMed PMID: 16443617.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid. AU - Singh,Raghuvir, AU - Kurella,A, AU - Dahotre,Narendra B, Y1 - 2006/01/27/ PY - 2006/1/31/pubmed PY - 2006/9/6/medline PY - 2006/1/31/entrez SP - 49 EP - 73 JF - Journal of biomaterials applications JO - J Biomater Appl VL - 21 IS - 1 N2 - Laser surface melting (LSM) of Ti-6Al-4V is performed in argon to improve its properties, such as microstructure, corrosion, and wear for biomedical applications. Corrosion behavior is investigated by conducting electrochemical polarization experiments in simulated body fluid (Ringer's solution) at 37 C. Wear properties are evaluated in Ringer's solution using pin-on-disc apparatus at a slow speed. Untreated Ti-6Al-4V contains alpha+beta phase. After laser surface melting, it transforms to acicular alpha embedded in the prior beta matrix. Grain growth in the range of 65-89 microm with increase in laser power from 800 to 1500 W due to increase in associated temperature is observed. The hardness of as-laserprocessed Ti-6Al-4V alloy is more (275-297 HV) than that of the untreated alloy (254 HV). Passivation currents are significantly reduced to < 4.3 microA/cm2 after laser treatment compared to untreated Ti-6Al-4V (approximately 12 microA/cm2). The wear resistance of laser-treated Ti-6Al-4V in simulated body fluid is enhanced compared to that of the untreated one. It is the highest for the one that is processed at a laser power of 800 W. Typical micro-cutting features of abrasive wear is the prominent mechanism of wear in both untreated and as-laser-treated Ti-6Al-4V. Fragmentation of wear debris assisted by microcracking was responsible for mass loss during the wear of untreated Ti-6Al-4V in Ringer's solution. SN - 0885-3282 UR - https://www.unboundmedicine.com/medline/citation/16443617/Laser_surface_modification_of_Ti__6Al__4V:_wear_and_corrosion_characterization_in_simulated_biofluid_ L2 - http://journals.sagepub.com/doi/full/10.1177/0885328206055998?url_ver=Z39.88-2003&amp;rfr_id=ori:rid:crossref.org&amp;rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -