Tags

Type your tag names separated by a space and hit enter

Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil.
J Appl Microbiol. 2006 Mar; 100(3):587-98.JA

Abstract

AIMS

This study investigates how autochthonous micro-organisms [bacterium and/or arbuscular mycorrhizal (AM) fungi] affected plant tolerance to Zn contamination.

METHODS AND RESULTS

Zinc-adapted and -nonadapted Glomus mosseae strains protected the host plant against the detrimental effect of Zn (600 microg g(-1)). Zn-adapted bacteria increased root growth and N, P nutrition in plants colonized by adapted G. mosseae and decreased the specific absorption rate (SAR) of Cd, Cu, Mo or Fe in plants colonized by Zn-nonadapted G. mosseae. Symbiotic structures (nodule number and extraradical mycelium) were best developed in plants colonized by those Zn-adapted isolates that were the most effective in increasing plant Zn tolerance. The bacterium also increased the quantity and quality (metabolic characteristics) of mycorrhizal colonization, with the highest improvement for arbuscular vitality and activity. Inocula also enhanced soil enzymatic activities (dehydrogenase, beta-glucosidase and phosphatase) and indol acetic acid (IAA) accumulation, particularly in the rhizosphere of plants inoculated with Zn-adapted isolates.

CONCLUSIONS

Glomus mosseae strains have a different inherent potential for improving plant growth and nutrition in Zn-contaminated soil. The bacterium increased the potential of mycorrhizal mycelium as inoculum.

SIGNIFICANCE AND IMPACT OF THE STUDY

Mycorrhizal performance, particularly that of the autochthonous strain, was increased by the bacterium and both contributed to better plant growth and establishment in Zn-contaminated soils.

Authors+Show Affiliations

Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC, Granada, Spain.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

16478498

Citation

Vivas, A, et al. "Effectiveness of Autochthonous Bacterium and Mycorrhizal Fungus On Trifolium Growth, Symbiotic Development and Soil Enzymatic Activities in Zn Contaminated Soil." Journal of Applied Microbiology, vol. 100, no. 3, 2006, pp. 587-98.
Vivas A, Barea JM, Biró B, et al. Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol. 2006;100(3):587-98.
Vivas, A., Barea, J. M., Biró, B., & Azcón, R. (2006). Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. Journal of Applied Microbiology, 100(3), 587-98.
Vivas A, et al. Effectiveness of Autochthonous Bacterium and Mycorrhizal Fungus On Trifolium Growth, Symbiotic Development and Soil Enzymatic Activities in Zn Contaminated Soil. J Appl Microbiol. 2006;100(3):587-98. PubMed PMID: 16478498.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. AU - Vivas,A, AU - Barea,J M, AU - Biró,B, AU - Azcón,R, PY - 2006/2/16/pubmed PY - 2006/8/24/medline PY - 2006/2/16/entrez SP - 587 EP - 98 JF - Journal of applied microbiology JO - J Appl Microbiol VL - 100 IS - 3 N2 - AIMS: This study investigates how autochthonous micro-organisms [bacterium and/or arbuscular mycorrhizal (AM) fungi] affected plant tolerance to Zn contamination. METHODS AND RESULTS: Zinc-adapted and -nonadapted Glomus mosseae strains protected the host plant against the detrimental effect of Zn (600 microg g(-1)). Zn-adapted bacteria increased root growth and N, P nutrition in plants colonized by adapted G. mosseae and decreased the specific absorption rate (SAR) of Cd, Cu, Mo or Fe in plants colonized by Zn-nonadapted G. mosseae. Symbiotic structures (nodule number and extraradical mycelium) were best developed in plants colonized by those Zn-adapted isolates that were the most effective in increasing plant Zn tolerance. The bacterium also increased the quantity and quality (metabolic characteristics) of mycorrhizal colonization, with the highest improvement for arbuscular vitality and activity. Inocula also enhanced soil enzymatic activities (dehydrogenase, beta-glucosidase and phosphatase) and indol acetic acid (IAA) accumulation, particularly in the rhizosphere of plants inoculated with Zn-adapted isolates. CONCLUSIONS: Glomus mosseae strains have a different inherent potential for improving plant growth and nutrition in Zn-contaminated soil. The bacterium increased the potential of mycorrhizal mycelium as inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY: Mycorrhizal performance, particularly that of the autochthonous strain, was increased by the bacterium and both contributed to better plant growth and establishment in Zn-contaminated soils. SN - 1364-5072 UR - https://www.unboundmedicine.com/medline/citation/16478498/Effectiveness_of_autochthonous_bacterium_and_mycorrhizal_fungus_on_Trifolium_growth_symbiotic_development_and_soil_enzymatic_activities_in_Zn_contaminated_soil_ DB - PRIME DP - Unbound Medicine ER -