Tags

Type your tag names separated by a space and hit enter

P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina.
J Comp Neurol 2006; 496(5):595-609JC

Abstract

Extracellular ATP is known to mediate fast, excitatory neurotransmission through activation of ionotropic P2X receptors. In this study, the localization of the P2X(2) receptor (P2X(2)R) subunit was studied in rat retina by using immunofluorescence immunohistochemistry and preembedding immunoelectron microscopy. The P2X(2)R was observed in large ganglion cells as well as in a subset of amacrine cells. Double labeling revealed that 96% of all P2X(2)R-immunoreactive amacrine cells showed gamma-aminobutyric acid (GABA) immunoreactivity. Subsets of P2X(2)R-immunoreactive amacrine cells expressed nitric oxide synthase and substance P; however, no colocalization was observed with choline acetyltransferase, vasoactive intestinal peptide, or tyrosine hydroxylase. Nearest-neighbor analysis confirmed that P2X(2)Rs were expressed by a heterogeneous population of amacrine cells. The synaptic connectivity of P2X(2)R amacrine cells was also investigated. It was interesting that P2X(2)R-immunoreactive amacrine cell dendrites stratified in the sublaminae of the inner plexiform layer occupied by cone, but not rod bipolar cell axon terminals. Immunoelectron microscopy revealed that P2X(2)-immunoreactive amacrine cell processes were associated with cone bipolar cell axon terminals as well as other conventional synapses in the inner plexiform layer. Taken together, these data provide further evidence for the involvement of extracellular ATP in neuronal signaling in the retina, particularly within cone pathways.

Authors+Show Affiliations

Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

16615123

Citation

Puthussery, Theresa, and Erica L. Fletcher. "P2X2 Receptors On Ganglion and Amacrine Cells in Cone Pathways of the Rat Retina." The Journal of Comparative Neurology, vol. 496, no. 5, 2006, pp. 595-609.
Puthussery T, Fletcher EL. P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina. J Comp Neurol. 2006;496(5):595-609.
Puthussery, T., & Fletcher, E. L. (2006). P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina. The Journal of Comparative Neurology, 496(5), pp. 595-609.
Puthussery T, Fletcher EL. P2X2 Receptors On Ganglion and Amacrine Cells in Cone Pathways of the Rat Retina. J Comp Neurol. 2006 Jun 10;496(5):595-609. PubMed PMID: 16615123.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina. AU - Puthussery,Theresa, AU - Fletcher,Erica L, PY - 2006/4/15/pubmed PY - 2006/6/9/medline PY - 2006/4/15/entrez SP - 595 EP - 609 JF - The Journal of comparative neurology JO - J. Comp. Neurol. VL - 496 IS - 5 N2 - Extracellular ATP is known to mediate fast, excitatory neurotransmission through activation of ionotropic P2X receptors. In this study, the localization of the P2X(2) receptor (P2X(2)R) subunit was studied in rat retina by using immunofluorescence immunohistochemistry and preembedding immunoelectron microscopy. The P2X(2)R was observed in large ganglion cells as well as in a subset of amacrine cells. Double labeling revealed that 96% of all P2X(2)R-immunoreactive amacrine cells showed gamma-aminobutyric acid (GABA) immunoreactivity. Subsets of P2X(2)R-immunoreactive amacrine cells expressed nitric oxide synthase and substance P; however, no colocalization was observed with choline acetyltransferase, vasoactive intestinal peptide, or tyrosine hydroxylase. Nearest-neighbor analysis confirmed that P2X(2)Rs were expressed by a heterogeneous population of amacrine cells. The synaptic connectivity of P2X(2)R amacrine cells was also investigated. It was interesting that P2X(2)R-immunoreactive amacrine cell dendrites stratified in the sublaminae of the inner plexiform layer occupied by cone, but not rod bipolar cell axon terminals. Immunoelectron microscopy revealed that P2X(2)-immunoreactive amacrine cell processes were associated with cone bipolar cell axon terminals as well as other conventional synapses in the inner plexiform layer. Taken together, these data provide further evidence for the involvement of extracellular ATP in neuronal signaling in the retina, particularly within cone pathways. SN - 0021-9967 UR - https://www.unboundmedicine.com/medline/citation/16615123/P2X2_receptors_on_ganglion_and_amacrine_cells_in_cone_pathways_of_the_rat_retina_ L2 - https://doi.org/10.1002/cne.20889 DB - PRIME DP - Unbound Medicine ER -