Tags

Type your tag names separated by a space and hit enter

Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel.
Int J Pharm. 2006 Aug 02; 318(1-2):92-102.IJ

Abstract

Praziquantel (PZQ), an anthelminthic drug widely used in developing countries, is classified in Class II in the Biopharmaceutics Classification Systems; this means that PZQ has very low water solubility and high permeability, thus the dissolution is the absorption rate-limiting factor. The aim of this work was to evaluate the suitability of melt granulation and ultrasonic spray congealing as techniques for enhancing the dissolution rate of PZQ. Granules in high shear mixer were prepared by melt granulation, using polyethylene glycol 4000 or poloxamer 188 as meltable binders and alpha-lactose monohydrate as a filler. Quite regularly shaped granules having main size fraction in the range 200-500 microm were obtained using both formulations; however, only poloxamer 188 granules demonstrated a significant (P=0.05) increase of the PZQ dissolution rate compared to pure drug. To evaluate the potential of ultrasonic spray congealing, Gelucire 50/13 microparticles having different drug to carrier ratios (5, 10, 20 and 30%, w/w) were then prepared. The results showed that all the microparticles had a significant higher dissolution rate (P=0.05) respect to pure PZQ. The increase of the PZQ content considerably decreased the dissolution rate of the drug: 5 and 10% PZQ loaded systems evidenced dissolution significantly enhanced compared to 20 and 30% PZQ microparticles. The microparticle's characterisation, performed by Differential Scanning Calorimetry, Hot Stage Microscopy, X-ray powder diffraction and FT-Infrared analysis, evidenced the absence of both modifications of the solid state of PZQ and of significant interactions between the drug and the carrier. In conclusion, melt granulation and ultrasonic spray congealing could be proposed as solvent free, rapid and low expensive manufacturing methods to increase the in vitro dissolution rate of PZQ.

Authors+Show Affiliations

Department of Pharmaceutical Sciences, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy. passerin@biocfarm.unibo.itNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

16697539

Citation

Passerini, Nadia, et al. "Evaluation of Melt Granulation and Ultrasonic Spray Congealing as Techniques to Enhance the Dissolution of Praziquantel." International Journal of Pharmaceutics, vol. 318, no. 1-2, 2006, pp. 92-102.
Passerini N, Albertini B, Perissutti B, et al. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm. 2006;318(1-2):92-102.
Passerini, N., Albertini, B., Perissutti, B., & Rodriguez, L. (2006). Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. International Journal of Pharmaceutics, 318(1-2), 92-102.
Passerini N, et al. Evaluation of Melt Granulation and Ultrasonic Spray Congealing as Techniques to Enhance the Dissolution of Praziquantel. Int J Pharm. 2006 Aug 2;318(1-2):92-102. PubMed PMID: 16697539.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. AU - Passerini,Nadia, AU - Albertini,Beatrice, AU - Perissutti,Beatrice, AU - Rodriguez,Lorenzo, Y1 - 2006/04/03/ PY - 2005/09/22/received PY - 2006/03/02/revised PY - 2006/03/22/accepted PY - 2006/5/16/pubmed PY - 2007/1/31/medline PY - 2006/5/16/entrez SP - 92 EP - 102 JF - International journal of pharmaceutics JO - Int J Pharm VL - 318 IS - 1-2 N2 - Praziquantel (PZQ), an anthelminthic drug widely used in developing countries, is classified in Class II in the Biopharmaceutics Classification Systems; this means that PZQ has very low water solubility and high permeability, thus the dissolution is the absorption rate-limiting factor. The aim of this work was to evaluate the suitability of melt granulation and ultrasonic spray congealing as techniques for enhancing the dissolution rate of PZQ. Granules in high shear mixer were prepared by melt granulation, using polyethylene glycol 4000 or poloxamer 188 as meltable binders and alpha-lactose monohydrate as a filler. Quite regularly shaped granules having main size fraction in the range 200-500 microm were obtained using both formulations; however, only poloxamer 188 granules demonstrated a significant (P=0.05) increase of the PZQ dissolution rate compared to pure drug. To evaluate the potential of ultrasonic spray congealing, Gelucire 50/13 microparticles having different drug to carrier ratios (5, 10, 20 and 30%, w/w) were then prepared. The results showed that all the microparticles had a significant higher dissolution rate (P=0.05) respect to pure PZQ. The increase of the PZQ content considerably decreased the dissolution rate of the drug: 5 and 10% PZQ loaded systems evidenced dissolution significantly enhanced compared to 20 and 30% PZQ microparticles. The microparticle's characterisation, performed by Differential Scanning Calorimetry, Hot Stage Microscopy, X-ray powder diffraction and FT-Infrared analysis, evidenced the absence of both modifications of the solid state of PZQ and of significant interactions between the drug and the carrier. In conclusion, melt granulation and ultrasonic spray congealing could be proposed as solvent free, rapid and low expensive manufacturing methods to increase the in vitro dissolution rate of PZQ. SN - 0378-5173 UR - https://www.unboundmedicine.com/medline/citation/16697539/Evaluation_of_melt_granulation_and_ultrasonic_spray_congealing_as_techniques_to_enhance_the_dissolution_of_praziquantel_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0378-5173(06)00261-4 DB - PRIME DP - Unbound Medicine ER -