Tags

Type your tag names separated by a space and hit enter

Synaptic responses of guinea pig and rat central amygdala neurons in vitro.
J Neurophysiol. 1991 May; 65(5):1227-41.JN

Abstract

1. To investigate postsynaptic potentials (PSPs), we made intracellular recordings from neurons of the amygdaloid central nucleus in slices from the guinea pig and rat brains maintained in vitro. The results from guinea pigs and rats were very similar. 2. In the presence of bicuculline (20 microM), focal electrical stimulation of the amygdaloid basal nucleus with low intensities elicited short-latency excitatory PSPs (EPSPs) followed by long-latency EPSPs. The short-latency EPSP was selectively blocked by 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX; 10-20 microM). The long-latency EPSP was preferentially abolished by D,L-2-amino-5-phosphonovaleric acid (D,L-APV; 40 microM) and was augmented by removal of extracellular Mg2+. The compound EPSP reversed at -4 mV, which was close to -1 mV, the reversal potential for pressure-ejected glutamate (Glu). 3. When the intensity of the focal stimulation was increased in the presence of bicuculline (20 microM), CNQX (20 microM), and D,L-APV (50 microM), a second EPSP with a short latency and a prolonged duration could be evoked in approximately 65% of the neurons. The EPSPs were reversibly blocked by d-tubocurarine (50 microM) or hexamethonium (200 microM) but were unaffected by atropine (1 microM) or a 5-hydroxytryptamine type 3 receptor antagonist, ICS-205930 (5-10 microM). In these neurons, acetylcholine (ACh; 1-3 mM) caused a depolarization, associated with a decreased input resistance. 4. In the presence of CNQX (20 microM) and D,L-APV (50 microM), single focal stimulation of the dorsolateral subdivision in the central nucleus with low intensities elicited a depolarizing inhibitory PSP (IPSP). The IPSP was reversibly abolished by bicuculline (20-40 microM). The reversal potential (-63 mV) for the IPSP was similar to the reversal potential (-61 mV) for the response to gamma-aminobutyric acid (GABA) applied by pressure ejection. 5. In the presence of bicuculline (20-40 microM) and CNQX (20 microM), a repetitive focal stimulus with high intensities delivered to the dorsolateral subdivision produced a hyperpolarizing PSP followed by a slow depolarization in most neurons. Of putative inhibitory amino acid transmitters, glycine (Gly; 3 mM) produced only a hyperpolarization, associated with a decrease in input resistance. Strychnine (1-2 microM) reversibly blocked both the Gly hyperpolarization and the synaptically evoked hyperpolarization. The reversal potential of -81 mV for the hyperpolarizing PSP was close to -82 mV for the Gly hyperpolarization. The reversal potential for the Gly response was shifted to less negative values by increasing the external K+ concentration or decreasing the extracellular Cl- concentration.(ABSTRACT TRUNCATED AT 400 WORDS)

Authors+Show Affiliations

Department of Physiology, Kurume University School of Medicine, Japan.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

1678422

Citation

Nose, I, et al. "Synaptic Responses of Guinea Pig and Rat Central Amygdala Neurons in Vitro." Journal of Neurophysiology, vol. 65, no. 5, 1991, pp. 1227-41.
Nose I, Higashi H, Inokuchi H, et al. Synaptic responses of guinea pig and rat central amygdala neurons in vitro. J Neurophysiol. 1991;65(5):1227-41.
Nose, I., Higashi, H., Inokuchi, H., & Nishi, S. (1991). Synaptic responses of guinea pig and rat central amygdala neurons in vitro. Journal of Neurophysiology, 65(5), 1227-41.
Nose I, et al. Synaptic Responses of Guinea Pig and Rat Central Amygdala Neurons in Vitro. J Neurophysiol. 1991;65(5):1227-41. PubMed PMID: 1678422.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Synaptic responses of guinea pig and rat central amygdala neurons in vitro. AU - Nose,I, AU - Higashi,H, AU - Inokuchi,H, AU - Nishi,S, PY - 1991/5/1/pubmed PY - 1991/5/1/medline PY - 1991/5/1/entrez SP - 1227 EP - 41 JF - Journal of neurophysiology JO - J Neurophysiol VL - 65 IS - 5 N2 - 1. To investigate postsynaptic potentials (PSPs), we made intracellular recordings from neurons of the amygdaloid central nucleus in slices from the guinea pig and rat brains maintained in vitro. The results from guinea pigs and rats were very similar. 2. In the presence of bicuculline (20 microM), focal electrical stimulation of the amygdaloid basal nucleus with low intensities elicited short-latency excitatory PSPs (EPSPs) followed by long-latency EPSPs. The short-latency EPSP was selectively blocked by 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX; 10-20 microM). The long-latency EPSP was preferentially abolished by D,L-2-amino-5-phosphonovaleric acid (D,L-APV; 40 microM) and was augmented by removal of extracellular Mg2+. The compound EPSP reversed at -4 mV, which was close to -1 mV, the reversal potential for pressure-ejected glutamate (Glu). 3. When the intensity of the focal stimulation was increased in the presence of bicuculline (20 microM), CNQX (20 microM), and D,L-APV (50 microM), a second EPSP with a short latency and a prolonged duration could be evoked in approximately 65% of the neurons. The EPSPs were reversibly blocked by d-tubocurarine (50 microM) or hexamethonium (200 microM) but were unaffected by atropine (1 microM) or a 5-hydroxytryptamine type 3 receptor antagonist, ICS-205930 (5-10 microM). In these neurons, acetylcholine (ACh; 1-3 mM) caused a depolarization, associated with a decreased input resistance. 4. In the presence of CNQX (20 microM) and D,L-APV (50 microM), single focal stimulation of the dorsolateral subdivision in the central nucleus with low intensities elicited a depolarizing inhibitory PSP (IPSP). The IPSP was reversibly abolished by bicuculline (20-40 microM). The reversal potential (-63 mV) for the IPSP was similar to the reversal potential (-61 mV) for the response to gamma-aminobutyric acid (GABA) applied by pressure ejection. 5. In the presence of bicuculline (20-40 microM) and CNQX (20 microM), a repetitive focal stimulus with high intensities delivered to the dorsolateral subdivision produced a hyperpolarizing PSP followed by a slow depolarization in most neurons. Of putative inhibitory amino acid transmitters, glycine (Gly; 3 mM) produced only a hyperpolarization, associated with a decrease in input resistance. Strychnine (1-2 microM) reversibly blocked both the Gly hyperpolarization and the synaptically evoked hyperpolarization. The reversal potential of -81 mV for the hyperpolarizing PSP was close to -82 mV for the Gly hyperpolarization. The reversal potential for the Gly response was shifted to less negative values by increasing the external K+ concentration or decreasing the extracellular Cl- concentration.(ABSTRACT TRUNCATED AT 400 WORDS) SN - 0022-3077 UR - https://www.unboundmedicine.com/medline/citation/1678422/Synaptic_responses_of_guinea_pig_and_rat_central_amygdala_neurons_in_vitro_ L2 - https://journals.physiology.org/doi/10.1152/jn.1991.65.5.1227?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -