Differential proinflammatory and angiogenesis-specific cytokine production in human pulmonary endothelial cells, HPMEC-ST1.6R infected with dengue-2 and dengue-3 virus.J Virol Methods. 2006 Dec; 138(1-2):211-7.JV
In this study, the ability of dengue virus serotypes 2 (DENV-2) and 3 (DENV-3) to infect and induce increased production of proinflammatory cytokines in a pulmonary endothelial cell line (HPMEC-ST1.6R) was investigated. This cell line exhibits the major constitutive and inducible endothelial cell characteristics, as well as angiogenic response. DENV-2 and DENV-3 infection was confirmed by an observed cytopathic effect (CPE), as well as RT-PCR and immunofluorescence assays. Increases in Th-1 and Th-2 cytokines IL-4, IL-8, IL-6, IL-10, GM-CSF, INF-gamma, and tumor necrosis factor (TNF-alpha) within DENV-2- and DENV-3-infected cells were demonstrated using a microbead-based Bio-plex assay. Proinflammatory cytokine increases and the expression of a potent angiogenic inducer protein, VEGF were confirmed by dot-blot analysis using the TranSignal Human Angiogenesis Antibody Array. Dengue virus-infected HPMEC-ST1.6R cells exhibited an elongated cytoplasmic morphology, possibly representing a response to VEGF and activation of angiogenesis. The increased levels of Th-1 cytokines and VEGF in DENV-2 virus infected-HPMEC-ST1.6R could be distinguished from those infected by DENV-3. This suggests that cytokine patterns associated with DENV infections may be serotype and strain-specific. The experimental approaches described here could be developed further into a useful diagnostic tool for the characterization of dengue hemorrhagic fever cases, leading to enhancement of treatment therapy.