Tags

Type your tag names separated by a space and hit enter

Jet propulsion in the cold: Mechanics of swimming in the Antarctic scallop Adamussium colbecki.
J Exp Biol. 2006 Nov; 209(Pt 22):4503-14.JE

Abstract

Unlike most bivalves, scallops are able to swim, relying on a shell with reduced mass and streamlined proportions, a large fast-twitch adductor muscle and the elastic characteristics of the shell's hinge. Despite these adaptations, swimming in scallops is never far from failure, and it is surprising to find a swimming scallop in Antarctica, where low temperature increases the viscosity of seawater, decreases the power output of the adductor muscle and potentially compromises the energy storage capability of the hinge material (abductin, a protein rubber). How does the Antarctic scallop, Adamussium colbecki, cope with the cold? Its shell mass is substantially reduced relative to that of temperate and tropical scallops, but this potential advantage is more than offset by a drastic reduction in adductor-muscle mass. By contrast, A. colbecki's abductin maintains a higher resilience at low temperatures than does the abductin of a temperate scallop. This resilience may help to compensate for reduced muscle mass, assisting the Antarctic scallop to maintain its marginal swimming ability. However, theory suggests that this assistance should be slight, so the adaptive value of increased resilience remains open to question. The high resilience of A. colbecki abductin at low temperatures may be of interest to materials engineers.

Authors+Show Affiliations

Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA. mwdenny@stanford.eduNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

17079720

Citation

Denny, Mark, and Luke Miller. "Jet Propulsion in the Cold: Mechanics of Swimming in the Antarctic Scallop Adamussium Colbecki." The Journal of Experimental Biology, vol. 209, no. Pt 22, 2006, pp. 4503-14.
Denny M, Miller L. Jet propulsion in the cold: Mechanics of swimming in the Antarctic scallop Adamussium colbecki. J Exp Biol. 2006;209(Pt 22):4503-14.
Denny, M., & Miller, L. (2006). Jet propulsion in the cold: Mechanics of swimming in the Antarctic scallop Adamussium colbecki. The Journal of Experimental Biology, 209(Pt 22), 4503-14.
Denny M, Miller L. Jet Propulsion in the Cold: Mechanics of Swimming in the Antarctic Scallop Adamussium Colbecki. J Exp Biol. 2006;209(Pt 22):4503-14. PubMed PMID: 17079720.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Jet propulsion in the cold: Mechanics of swimming in the Antarctic scallop Adamussium colbecki. AU - Denny,Mark, AU - Miller,Luke, PY - 2006/11/3/pubmed PY - 2007/2/9/medline PY - 2006/11/3/entrez SP - 4503 EP - 14 JF - The Journal of experimental biology JO - J. Exp. Biol. VL - 209 IS - Pt 22 N2 - Unlike most bivalves, scallops are able to swim, relying on a shell with reduced mass and streamlined proportions, a large fast-twitch adductor muscle and the elastic characteristics of the shell's hinge. Despite these adaptations, swimming in scallops is never far from failure, and it is surprising to find a swimming scallop in Antarctica, where low temperature increases the viscosity of seawater, decreases the power output of the adductor muscle and potentially compromises the energy storage capability of the hinge material (abductin, a protein rubber). How does the Antarctic scallop, Adamussium colbecki, cope with the cold? Its shell mass is substantially reduced relative to that of temperate and tropical scallops, but this potential advantage is more than offset by a drastic reduction in adductor-muscle mass. By contrast, A. colbecki's abductin maintains a higher resilience at low temperatures than does the abductin of a temperate scallop. This resilience may help to compensate for reduced muscle mass, assisting the Antarctic scallop to maintain its marginal swimming ability. However, theory suggests that this assistance should be slight, so the adaptive value of increased resilience remains open to question. The high resilience of A. colbecki abductin at low temperatures may be of interest to materials engineers. SN - 0022-0949 UR - https://www.unboundmedicine.com/medline/citation/17079720/Jet_propulsion_in_the_cold:_Mechanics_of_swimming_in_the_Antarctic_scallop_Adamussium_colbecki_ L2 - http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=17079720 DB - PRIME DP - Unbound Medicine ER -