Tags

Type your tag names separated by a space and hit enter

Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs.
J Anim Sci. 2007 May; 85(5):1168-76.JA

Abstract

An experiment was conducted to measure DE and ME and the apparent total tract digestibility (ATTD) of energy, N, and P in distillers dried grains with solubles (DDGS) fed to growing pigs. Ten sources of DDGS were obtained from ethanol plants in South Dakota and Minnesota, and 11 diets were formulated. One diet was based on corn (96.8%), limestone, salt, vitamins, and microminerals. Ten additional diets were formulated by mixing the corn diet and each of the 10 sources of DDGS in a 1:1 ratio. Eleven growing pigs (initial BW of 29.3 +/- 0.42 kg) were allotted to an 11 x 11 Latin square design, with 11 periods and 11 pigs. Each of the 11 diets was fed to each pig during 1 period. Pigs were placed in metabolism cages that allowed for the total, but separate, collection of feces and urine. Samples were analyzed for GE, N, and P and energy and N balances, and the ATTD of GE, N, and P were calculated for each diet. By subtracting the contribution from the corn diet to the DDGS-containing diets, the energy and N balances and the ATTD for GE, N, and P for each source of DDGS were calculated. Results of the experiment showed that the DE and ME differed (P < 0.001) among the 10 sources of DDGS (3,947 to 4,593 kcal of DE/kg of DM and 3,674 to 4,336 kcal of ME/kg of DM). The average DE and ME in DDGS were 4,140 and 3,897 kcal/kg of DM, respectively. These values were not different from the DE and ME in corn (4,088 and 3,989 kcal/kg of DM, respectively). Based on the analyzed GE and nutrient composition of DDGS and the calculated values for DE and ME, prediction equations for DE and ME were developed. These equations showed that DE and ME in DDGS may be predicted from the concentration of ash, ether extract, ADF, and GE. The retention of N from DDGS was greater (P < 0.001) than from corn, but when calculated on a percentage basis, the N retention did not differ between DDGS and corn. The ATTD of P in DDGS was 59.1% on average for the 10 samples. This value was greater (P < 0.001) than the ATTD of P in corn (19.3%). It is concluded that the DE and ME in DDGS is not different from the DE and ME in corn. However, if DDGS is included in diets fed to growing swine, a greater portion of the organic P will be digested and absorbed, thus reducing the need for adding inorganic P to the diets.

Authors+Show Affiliations

Department of Animal and Range Sciences, South Dakota State University, Brookings 57007, USA.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17224463

Citation

Pedersen, C, et al. "Digestibility of Energy and Phosphorus in Ten Samples of Distillers Dried Grains With Solubles Fed to Growing Pigs." Journal of Animal Science, vol. 85, no. 5, 2007, pp. 1168-76.
Pedersen C, Boersma MG, Stein HH. Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs. J Anim Sci. 2007;85(5):1168-76.
Pedersen, C., Boersma, M. G., & Stein, H. H. (2007). Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs. Journal of Animal Science, 85(5), 1168-76.
Pedersen C, Boersma MG, Stein HH. Digestibility of Energy and Phosphorus in Ten Samples of Distillers Dried Grains With Solubles Fed to Growing Pigs. J Anim Sci. 2007;85(5):1168-76. PubMed PMID: 17224463.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs. AU - Pedersen,C, AU - Boersma,M G, AU - Stein,H H, Y1 - 2007/01/15/ PY - 2007/1/17/pubmed PY - 2007/6/5/medline PY - 2007/1/17/entrez SP - 1168 EP - 76 JF - Journal of animal science JO - J Anim Sci VL - 85 IS - 5 N2 - An experiment was conducted to measure DE and ME and the apparent total tract digestibility (ATTD) of energy, N, and P in distillers dried grains with solubles (DDGS) fed to growing pigs. Ten sources of DDGS were obtained from ethanol plants in South Dakota and Minnesota, and 11 diets were formulated. One diet was based on corn (96.8%), limestone, salt, vitamins, and microminerals. Ten additional diets were formulated by mixing the corn diet and each of the 10 sources of DDGS in a 1:1 ratio. Eleven growing pigs (initial BW of 29.3 +/- 0.42 kg) were allotted to an 11 x 11 Latin square design, with 11 periods and 11 pigs. Each of the 11 diets was fed to each pig during 1 period. Pigs were placed in metabolism cages that allowed for the total, but separate, collection of feces and urine. Samples were analyzed for GE, N, and P and energy and N balances, and the ATTD of GE, N, and P were calculated for each diet. By subtracting the contribution from the corn diet to the DDGS-containing diets, the energy and N balances and the ATTD for GE, N, and P for each source of DDGS were calculated. Results of the experiment showed that the DE and ME differed (P < 0.001) among the 10 sources of DDGS (3,947 to 4,593 kcal of DE/kg of DM and 3,674 to 4,336 kcal of ME/kg of DM). The average DE and ME in DDGS were 4,140 and 3,897 kcal/kg of DM, respectively. These values were not different from the DE and ME in corn (4,088 and 3,989 kcal/kg of DM, respectively). Based on the analyzed GE and nutrient composition of DDGS and the calculated values for DE and ME, prediction equations for DE and ME were developed. These equations showed that DE and ME in DDGS may be predicted from the concentration of ash, ether extract, ADF, and GE. The retention of N from DDGS was greater (P < 0.001) than from corn, but when calculated on a percentage basis, the N retention did not differ between DDGS and corn. The ATTD of P in DDGS was 59.1% on average for the 10 samples. This value was greater (P < 0.001) than the ATTD of P in corn (19.3%). It is concluded that the DE and ME in DDGS is not different from the DE and ME in corn. However, if DDGS is included in diets fed to growing swine, a greater portion of the organic P will be digested and absorbed, thus reducing the need for adding inorganic P to the diets. SN - 1525-3163 UR - https://www.unboundmedicine.com/medline/citation/17224463/Digestibility_of_energy_and_phosphorus_in_ten_samples_of_distillers_dried_grains_with_solubles_fed_to_growing_pigs_ L2 - https://academic.oup.com/jas/article-lookup/doi/10.2527/jas.2006-252 DB - PRIME DP - Unbound Medicine ER -