Interactions of saturated diacylglycerols with phosphatidylcholine bilayers: A 2H NMR study.Biochemistry. 1992 Jan 21; 31(2):623-30.B
The interactions of a series of saturated diacylglycerols (DAGs) with fatty acid side chain lengths of 6-14 carbons with multilamellar phospholipid bilayers consisting either of dipalmitoylphosphatidylcholine (DPPC) or of a mixture of DPPC and bovine liver phosphatidylcholine (BL-PC) extracts were studied by 2H NMR spectrometry. We found that the perturbation induced by the DAGs into the bilayer structure strongly depends on the length of the DAG fatty acid side chain. Shorter chain 1,2-sn-dihexanoylglycerol and, to a larger degree, 1,2-sn-dioctanoylglycerol (diC8) induce transverse perturbation of the bilayer structure: the order parameters of the phospholipid side chains are increased by the intercalating DAG molecules in the region adjacent to the phospholipid headgroups and decreased toward the terminal methyls, corresponding to the bilayer interior. The longer chain DAGs (C greater than or equal to 12) studied in this and previous [De Boeck & Zidovetzki (1989) Biochemistry 28, 7439] work induce lateral phase separation of the lipids into DAG-enriched gellike domains and relatively DAG-free regions in the liquid-crystalline phase. Each of the DAGs studied induces a decrease in the area per phospholipid molecule, and a corresponding increase in the lateral surface pressure of the bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)