Tags

Type your tag names separated by a space and hit enter

Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.
Circ Res. 2007 Mar 30; 100(6):894-903.CircR

Abstract

Accumulating evidence suggests a critical role of increased reactive oxygen species production for left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). An increased myocardial activity of the NAD(P)H oxidase, a major oxidant enzyme system, has been observed in human heart failure; however, the role of the NAD(P)H oxidase for LV remodeling and dysfunction after MI remains to be determined. MI was induced in wild-type (WT) mice (n=46) and mice lacking the cytosolic NAD(P)H oxidase component p47(phox) (p47(phox)-/- mice) (n=32). Infarct size was similar among the groups. NAD(P)H oxidase activity was markedly increased in remote LV myocardium of WT mice after MI as compared with sham-operated mice (83+/-8 versus 16.7+/-3.5 nmol of O(2)(-) x microg(-1) x min(-1); P<0.01) but not in p47(phox)-/- mice after MI (13.5+/-3.6 versus 15.5+/-3.5 nmol of O(2)(-) x microg(-1) x min(-1)), as assessed by electron-spin resonance spectroscopy using the spin probe CP-H. Furthermore, increased myocardial xanthine oxidase activity was observed in WT, but not in p47(phox)-/- mice after MI, suggesting NAD(P)H oxidase-dependent xanthine oxidase activation. Myocardial reactive oxygen species production was increased in WT mice, but not in p47(phox)-/- mice, after MI. LV cavity dilatation and dysfunction 4 weeks after MI were markedly attenuated in p47(phox)-/- mice as compared with WT mice, as assessed by echocardiography (LV end-diastolic diameter: 4.5+/-0.2 versus 6.3+/-0.3 mm, P<0.01; LV ejection fraction, 35.8+/-2.5 versus 22.6+/-4.4%, P<0.05). Furthermore, cardiomyocyte hypertrophy, apoptosis, and interstitial fibrosis were substantially reduced in p47(phox)-/- mice as compared with WT mice. Importantly, the survival rate was markedly higher in p47(phox)-/- mice as compared with WT mice after MI (72% versus 48%; P<0.05). These results suggest a pivotal role of NAD(P)H oxidase activation and its subunit p47(phox) for LV remodeling/dysfunction and survival after MI. The NAD(P)H oxidase system represents therefore a potential novel therapeutic target to prevent cardiac failure after MI.

Authors+Show Affiliations

Medizinische Hochschule Hannover, Abteilung Kardiologie und Angiologie, Hannover, Germany.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17332431

Citation

Doerries, Carola, et al. "Critical Role of the NAD(P)H Oxidase Subunit P47phox for Left Ventricular Remodeling/dysfunction and Survival After Myocardial Infarction." Circulation Research, vol. 100, no. 6, 2007, pp. 894-903.
Doerries C, Grote K, Hilfiker-Kleiner D, et al. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res. 2007;100(6):894-903.
Doerries, C., Grote, K., Hilfiker-Kleiner, D., Luchtefeld, M., Schaefer, A., Holland, S. M., Sorrentino, S., Manes, C., Schieffer, B., Drexler, H., & Landmesser, U. (2007). Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circulation Research, 100(6), 894-903.
Doerries C, et al. Critical Role of the NAD(P)H Oxidase Subunit P47phox for Left Ventricular Remodeling/dysfunction and Survival After Myocardial Infarction. Circ Res. 2007 Mar 30;100(6):894-903. PubMed PMID: 17332431.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. AU - Doerries,Carola, AU - Grote,Karsten, AU - Hilfiker-Kleiner,Denise, AU - Luchtefeld,Maren, AU - Schaefer,Arnd, AU - Holland,Steven M, AU - Sorrentino,Sajoscha, AU - Manes,Costantina, AU - Schieffer,Bernhard, AU - Drexler,Helmut, AU - Landmesser,Ulf, Y1 - 2007/03/01/ PY - 2007/3/3/pubmed PY - 2007/4/14/medline PY - 2007/3/3/entrez SP - 894 EP - 903 JF - Circulation research JO - Circ Res VL - 100 IS - 6 N2 - Accumulating evidence suggests a critical role of increased reactive oxygen species production for left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). An increased myocardial activity of the NAD(P)H oxidase, a major oxidant enzyme system, has been observed in human heart failure; however, the role of the NAD(P)H oxidase for LV remodeling and dysfunction after MI remains to be determined. MI was induced in wild-type (WT) mice (n=46) and mice lacking the cytosolic NAD(P)H oxidase component p47(phox) (p47(phox)-/- mice) (n=32). Infarct size was similar among the groups. NAD(P)H oxidase activity was markedly increased in remote LV myocardium of WT mice after MI as compared with sham-operated mice (83+/-8 versus 16.7+/-3.5 nmol of O(2)(-) x microg(-1) x min(-1); P<0.01) but not in p47(phox)-/- mice after MI (13.5+/-3.6 versus 15.5+/-3.5 nmol of O(2)(-) x microg(-1) x min(-1)), as assessed by electron-spin resonance spectroscopy using the spin probe CP-H. Furthermore, increased myocardial xanthine oxidase activity was observed in WT, but not in p47(phox)-/- mice after MI, suggesting NAD(P)H oxidase-dependent xanthine oxidase activation. Myocardial reactive oxygen species production was increased in WT mice, but not in p47(phox)-/- mice, after MI. LV cavity dilatation and dysfunction 4 weeks after MI were markedly attenuated in p47(phox)-/- mice as compared with WT mice, as assessed by echocardiography (LV end-diastolic diameter: 4.5+/-0.2 versus 6.3+/-0.3 mm, P<0.01; LV ejection fraction, 35.8+/-2.5 versus 22.6+/-4.4%, P<0.05). Furthermore, cardiomyocyte hypertrophy, apoptosis, and interstitial fibrosis were substantially reduced in p47(phox)-/- mice as compared with WT mice. Importantly, the survival rate was markedly higher in p47(phox)-/- mice as compared with WT mice after MI (72% versus 48%; P<0.05). These results suggest a pivotal role of NAD(P)H oxidase activation and its subunit p47(phox) for LV remodeling/dysfunction and survival after MI. The NAD(P)H oxidase system represents therefore a potential novel therapeutic target to prevent cardiac failure after MI. SN - 1524-4571 UR - https://www.unboundmedicine.com/medline/citation/17332431/Critical_role_of_the_NAD_P_H_oxidase_subunit_p47phox_for_left_ventricular_remodeling/dysfunction_and_survival_after_myocardial_infarction_ DB - PRIME DP - Unbound Medicine ER -