Tags

Type your tag names separated by a space and hit enter

Observations on respiratory flow strategies during and after intense treadmill exercise to fatigue in thoroughbred racehorses.
Equine Vet J Suppl. 2006 AugEV

Abstract

REASONS FOR PERFORMING STUDY

Locomotor-respiratory coupled (LRC) breath types are a feature of galloping exercise in horses. Differences in breath type have been demonstrated during exercise in particular the 'big respiratory cycle' (BRC) and 'flow hesitation'. To investigate breath types during recovery and quantitatively investigate BRCs during exercise to understanding the mechanism driving BRCs.

OBJECTIVES

To investigate the occurrence of different breath types during and after intense treadmill exercise, and test the hypothesis that large breaths (BRCs) were a function of respiratory frequency.

METHODS

Six trained and clinically normal Thoroughbred horses were exercise tested on a treadmill (slope 10%). Breath-by-breath pulmonary ventilation was measured continuously during exercise and recovery using a Quadflow mask.

RESULTS

Five different breath types were identified, and classified as normal monophasic, normal biphasic, deglutition, effort pause, or large breaths. Exercising at 10 m/sec, the number of large breaths was significantly related to Rf (r = -0.86, P = 0.03). During 120 sec after exercise there were 2 distinct populations of breaths, large and normal monophasic.

CONCLUSIONS

BRC type breaths are a normal feature of ventilation during and after intense exercise. In recovery there are two distinct breath populations. During exercise BRC frequency is inversely associated with respiratory frequency and highly dependant on the individual horse. From intense exercise to recovery, high flow rates and LRC limited tidal volumes are replaced by high tidal volumes and progressively decreasing flow rates. There is a temporal association between BRC occurrence and PECO2.

POTENTIAL RELEVANCE

Breath types and the physiological mechanism for driving each type is important in the clinical interpretation of respiratory disease or dysfunction. The demonstration of BRC association with PECO2 may help understand the driving mechanism for the BRC. In pulmonary function testing, breath type is important in quantitative results. The demonstration that high tidal flows with limited tidal volumes during intense exercise being replaced by high tidal volumes and progressively decreasing flows in recovery has potential clinical relevance.

Authors+Show Affiliations

Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17402485

Citation

Curtis, R A., et al. "Observations On Respiratory Flow Strategies During and After Intense Treadmill Exercise to Fatigue in Thoroughbred Racehorses." Equine Veterinary Journal. Supplement, 2006, pp. 567-72.
Curtis RA, Kusano K, Evans DL. Observations on respiratory flow strategies during and after intense treadmill exercise to fatigue in thoroughbred racehorses. Equine Vet J Suppl. 2006.
Curtis, R. A., Kusano, K., & Evans, D. L. (2006). Observations on respiratory flow strategies during and after intense treadmill exercise to fatigue in thoroughbred racehorses. Equine Veterinary Journal. Supplement, (36), 567-72.
Curtis RA, Kusano K, Evans DL. Observations On Respiratory Flow Strategies During and After Intense Treadmill Exercise to Fatigue in Thoroughbred Racehorses. Equine Vet J Suppl. 2006;(36)567-72. PubMed PMID: 17402485.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Observations on respiratory flow strategies during and after intense treadmill exercise to fatigue in thoroughbred racehorses. AU - Curtis,R A, AU - Kusano,K, AU - Evans,D L, PY - 2007/4/4/pubmed PY - 2007/5/3/medline PY - 2007/4/4/entrez SP - 567 EP - 72 JF - Equine veterinary journal. Supplement JO - Equine Vet J Suppl IS - 36 N2 - REASONS FOR PERFORMING STUDY: Locomotor-respiratory coupled (LRC) breath types are a feature of galloping exercise in horses. Differences in breath type have been demonstrated during exercise in particular the 'big respiratory cycle' (BRC) and 'flow hesitation'. To investigate breath types during recovery and quantitatively investigate BRCs during exercise to understanding the mechanism driving BRCs. OBJECTIVES: To investigate the occurrence of different breath types during and after intense treadmill exercise, and test the hypothesis that large breaths (BRCs) were a function of respiratory frequency. METHODS: Six trained and clinically normal Thoroughbred horses were exercise tested on a treadmill (slope 10%). Breath-by-breath pulmonary ventilation was measured continuously during exercise and recovery using a Quadflow mask. RESULTS: Five different breath types were identified, and classified as normal monophasic, normal biphasic, deglutition, effort pause, or large breaths. Exercising at 10 m/sec, the number of large breaths was significantly related to Rf (r = -0.86, P = 0.03). During 120 sec after exercise there were 2 distinct populations of breaths, large and normal monophasic. CONCLUSIONS: BRC type breaths are a normal feature of ventilation during and after intense exercise. In recovery there are two distinct breath populations. During exercise BRC frequency is inversely associated with respiratory frequency and highly dependant on the individual horse. From intense exercise to recovery, high flow rates and LRC limited tidal volumes are replaced by high tidal volumes and progressively decreasing flow rates. There is a temporal association between BRC occurrence and PECO2. POTENTIAL RELEVANCE: Breath types and the physiological mechanism for driving each type is important in the clinical interpretation of respiratory disease or dysfunction. The demonstration of BRC association with PECO2 may help understand the driving mechanism for the BRC. In pulmonary function testing, breath type is important in quantitative results. The demonstration that high tidal flows with limited tidal volumes during intense exercise being replaced by high tidal volumes and progressively decreasing flows in recovery has potential clinical relevance. UR - https://www.unboundmedicine.com/medline/citation/17402485/Observations_on_respiratory_flow_strategies_during_and_after_intense_treadmill_exercise_to_fatigue_in_thoroughbred_racehorses_ L2 - https://doi.org/10.1111/j.2042-3306.2006.tb05606.x DB - PRIME DP - Unbound Medicine ER -