Tags

Type your tag names separated by a space and hit enter

Activity of garenoxacin, an investigational des-F(6)-quinolone, tested against pathogens from community-acquired respiratory tract infections, including those with elevated or resistant-level fluoroquinolone MIC values.
Diagn Microbiol Infect Dis. 2007 May; 58(1):9-17.DM

Abstract

Garenoxacin, a novel des-F(6)-quinolone, was tested against 40423 pathogenic isolates associated with community-acquired respiratory tract infections (CA-RTIs). The strains included Streptococcus pneumoniae (18887), Haemophilus influenzae (15555), and Moraxella catarrhalis (5981), each isolated from a significant infection monitored by the SENTRY Antimicrobial Surveillance Program (1999-2005; North America, Latin America, and Europe). All tests were performed by reference broth microdilution methods for garenoxacin and 19 comparison agents. The garenoxacin MIC(90) and percentage (%) of strains inhibited at < or =1 microg/mL (proposed susceptible breakpoint) were S. pneumoniae (0.06 microg/mL, >99.9% susceptible), H. influenzae (< or =0.03 microg/mL, >99.9%), and M. catarrhalis (< or =0.03 microg/mL, 100.0%). The garenoxacin potency versus the pneumococci was 16- to 32-fold greater than levofloxacin or ciprofloxacin and 2-fold superior to moxifloxacin (MIC(90), 0.12 microg/mL). Resistances to other classes of antimicrobials did not adversely influence garenoxacin MIC results. Ciprofloxacin- or levofloxacin-resistant (MIC, > or =4 microg/mL) S. pneumoniae had higher garenoxacin MIC(90) values (1 microg/mL), but 90.6% to 97.5% of strains remained susceptible. Strains of all 3 monitored pathogens with mutations in the quinolone resistance determining region (QRDR) had higher garenoxacin MIC results, with > or =3 to 4 QRDR mutations required to elevate garenoxacin MIC values to > or =2 microg/mL. In conclusion, garenoxacin possesses a potent activity against pneumococci, H. influenzae, and M. catarrhalis strains worldwide, at a level significantly greater than the available tested agents in the fluoroquinolone class (ciprofloxacin, levofloxacin, and moxifloxacin). Only 13 and 4 isolates (0.07% and 0.03%) of S. pneumoniae and H. influenzae, respectively, had a garenoxacin MIC at > or =2 microg/mL, thus, making this new "respiratory antipneumococcal" quinolone an attractive candidate for the therapy of contemporary CA-RTI (bronchitis, pneumonia, and sinusitis).

Authors+Show Affiliations

JMI Laboratories, North Liberty, IA 52317, USA. ronald-jones@jmilabs.comNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17408903

Citation

Jones, Ronald N., et al. "Activity of Garenoxacin, an Investigational des-F(6)-quinolone, Tested Against Pathogens From Community-acquired Respiratory Tract Infections, Including Those With Elevated or Resistant-level Fluoroquinolone MIC Values." Diagnostic Microbiology and Infectious Disease, vol. 58, no. 1, 2007, pp. 9-17.
Jones RN, Fritsche TR, Sader HS, et al. Activity of garenoxacin, an investigational des-F(6)-quinolone, tested against pathogens from community-acquired respiratory tract infections, including those with elevated or resistant-level fluoroquinolone MIC values. Diagn Microbiol Infect Dis. 2007;58(1):9-17.
Jones, R. N., Fritsche, T. R., Sader, H. S., & Stilwell, M. G. (2007). Activity of garenoxacin, an investigational des-F(6)-quinolone, tested against pathogens from community-acquired respiratory tract infections, including those with elevated or resistant-level fluoroquinolone MIC values. Diagnostic Microbiology and Infectious Disease, 58(1), 9-17.
Jones RN, et al. Activity of Garenoxacin, an Investigational des-F(6)-quinolone, Tested Against Pathogens From Community-acquired Respiratory Tract Infections, Including Those With Elevated or Resistant-level Fluoroquinolone MIC Values. Diagn Microbiol Infect Dis. 2007;58(1):9-17. PubMed PMID: 17408903.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Activity of garenoxacin, an investigational des-F(6)-quinolone, tested against pathogens from community-acquired respiratory tract infections, including those with elevated or resistant-level fluoroquinolone MIC values. AU - Jones,Ronald N, AU - Fritsche,Thomas R, AU - Sader,Helio S, AU - Stilwell,Matthew G, Y1 - 2007/04/03/ PY - 2007/01/25/received PY - 2007/01/27/accepted PY - 2007/4/6/pubmed PY - 2007/6/30/medline PY - 2007/4/6/entrez SP - 9 EP - 17 JF - Diagnostic microbiology and infectious disease JO - Diagn Microbiol Infect Dis VL - 58 IS - 1 N2 - Garenoxacin, a novel des-F(6)-quinolone, was tested against 40423 pathogenic isolates associated with community-acquired respiratory tract infections (CA-RTIs). The strains included Streptococcus pneumoniae (18887), Haemophilus influenzae (15555), and Moraxella catarrhalis (5981), each isolated from a significant infection monitored by the SENTRY Antimicrobial Surveillance Program (1999-2005; North America, Latin America, and Europe). All tests were performed by reference broth microdilution methods for garenoxacin and 19 comparison agents. The garenoxacin MIC(90) and percentage (%) of strains inhibited at < or =1 microg/mL (proposed susceptible breakpoint) were S. pneumoniae (0.06 microg/mL, >99.9% susceptible), H. influenzae (< or =0.03 microg/mL, >99.9%), and M. catarrhalis (< or =0.03 microg/mL, 100.0%). The garenoxacin potency versus the pneumococci was 16- to 32-fold greater than levofloxacin or ciprofloxacin and 2-fold superior to moxifloxacin (MIC(90), 0.12 microg/mL). Resistances to other classes of antimicrobials did not adversely influence garenoxacin MIC results. Ciprofloxacin- or levofloxacin-resistant (MIC, > or =4 microg/mL) S. pneumoniae had higher garenoxacin MIC(90) values (1 microg/mL), but 90.6% to 97.5% of strains remained susceptible. Strains of all 3 monitored pathogens with mutations in the quinolone resistance determining region (QRDR) had higher garenoxacin MIC results, with > or =3 to 4 QRDR mutations required to elevate garenoxacin MIC values to > or =2 microg/mL. In conclusion, garenoxacin possesses a potent activity against pneumococci, H. influenzae, and M. catarrhalis strains worldwide, at a level significantly greater than the available tested agents in the fluoroquinolone class (ciprofloxacin, levofloxacin, and moxifloxacin). Only 13 and 4 isolates (0.07% and 0.03%) of S. pneumoniae and H. influenzae, respectively, had a garenoxacin MIC at > or =2 microg/mL, thus, making this new "respiratory antipneumococcal" quinolone an attractive candidate for the therapy of contemporary CA-RTI (bronchitis, pneumonia, and sinusitis). SN - 0732-8893 UR - https://www.unboundmedicine.com/medline/citation/17408903/Activity_of_garenoxacin_an_investigational_des_F_6__quinolone_tested_against_pathogens_from_community_acquired_respiratory_tract_infections_including_those_with_elevated_or_resistant_level_fluoroquinolone_MIC_values_ DB - PRIME DP - Unbound Medicine ER -